找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Intelligent Disease Diagnosis and Treatment; Research Papers in H Chee-Peng Lim,Ashlesha Vaidya,Lakhmi C. Jain Book 2024 The Ed

[復(fù)制鏈接]
查看: 25907|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:06:16 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Intelligent Disease Diagnosis and Treatment
期刊簡稱Research Papers in H
影響因子2023Chee-Peng Lim,Ashlesha Vaidya,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/168/167279/167279.mp4
發(fā)行地址Presents a sample of recent advances in the theory and applications of artificial intelligence for aging populations.Focuses on assisting aging populations using the recently evolved artificial intell
學科分類Intelligent Systems Reference Library
圖書封面Titlebook: Advances in Intelligent Disease Diagnosis and Treatment; Research Papers in H Chee-Peng Lim,Ashlesha Vaidya,Lakhmi C. Jain Book 2024 The Ed
影響因子.The book delves into innovations in AI and related computing paradigms for disease detection and diagnosis. The collected chapters elucidate the use of a variety of AI and related methodologies to address specific medical challenges. From detecting pancreatic cancer, classifying micro-emboli in stroke diagnosis, to segmenting brain tumours from MRI data, and more, the culmination of these studies underscores the transformative impact AI and digital technologies can have on healthcare, emphasising their potential to enhance medical treatment and improve patient care..
Pindex Book 2024
The information of publication is updating

書目名稱Advances in Intelligent Disease Diagnosis and Treatment影響因子(影響力)




書目名稱Advances in Intelligent Disease Diagnosis and Treatment影響因子(影響力)學科排名




書目名稱Advances in Intelligent Disease Diagnosis and Treatment網(wǎng)絡(luò)公開度




書目名稱Advances in Intelligent Disease Diagnosis and Treatment網(wǎng)絡(luò)公開度學科排名




書目名稱Advances in Intelligent Disease Diagnosis and Treatment被引頻次




書目名稱Advances in Intelligent Disease Diagnosis and Treatment被引頻次學科排名




書目名稱Advances in Intelligent Disease Diagnosis and Treatment年度引用




書目名稱Advances in Intelligent Disease Diagnosis and Treatment年度引用學科排名




書目名稱Advances in Intelligent Disease Diagnosis and Treatment讀者反饋




書目名稱Advances in Intelligent Disease Diagnosis and Treatment讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:22:43 | 只看該作者
Die wohlfahrts?konomische Referenzweltghbourhood component analysis to obtain the most significant features for the training data. The proposed system performance is then compared with standard active-learning, self-training, and baseline systems. The results proved that the proposed system can classify unlabelled data with an automated
板凳
發(fā)表于 2025-3-22 01:23:08 | 只看該作者
Die wohlfahrts?konomische Referenzweltmain requests of medical specialists are taken into account. The work shows that based on the developed methodology 3D modeling of brain tumor MRI data from a set of 2D images (DICOM) provide realistic visualization.
地板
發(fā)表于 2025-3-22 06:06:29 | 只看該作者
https://doi.org/10.1007/978-3-663-07250-8ion, a framework which realizes a series of medical imaging analysis for medical professionals in clinics is proposed as the utilization of our Adaptive DBN model, from collecting data to model training, inference, and re-training for new data.
5#
發(fā)表于 2025-3-22 11:10:21 | 只看該作者
Einige Literatur über Nachbargebietemploys a pruning approach, where a pre-trained network is trimmed in an early convolutional block and connected to custom classifier layer. Additionally, the layers to be fine-tuned are optimally selected. Thus, this process reduces the number of transferred layers and trainable parameters. The prop
6#
發(fā)表于 2025-3-22 13:38:35 | 只看該作者
7#
發(fā)表于 2025-3-22 17:45:06 | 只看該作者
8#
發(fā)表于 2025-3-22 23:32:12 | 只看該作者
9#
發(fā)表于 2025-3-23 03:38:37 | 只看該作者
https://doi.org/10.1007/b137045ck of training data and the domain shift issue, domain adaptation-based methods have emerged as a viable solution to reduce the domain gap across datasets with distinct feature characteristics and data distributions. In this chapter, we discuss domain adaptation-based techniques for liver tumor dete
10#
發(fā)表于 2025-3-23 05:58:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东平县| 闵行区| 普定县| 黄冈市| 莒南县| 竹山县| 资中县| 大英县| 平武县| 思茅市| 安龙县| 贡觉县| 西昌市| 德阳市| 新乡市| 铜川市| 綦江县| 鄱阳县| 甘德县| 永胜县| 顺义区| 姚安县| 开鲁县| 防城港市| 通化市| 莎车县| 乌拉特中旗| 白玉县| 二连浩特市| 山阳县| 乌拉特后旗| 通城县| 绵竹市| 和田县| 新绛县| 介休市| 新营市| 西城区| 长阳| 富平县| 鲁甸县|