找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphisms of Affine Spaces; Arno Essen Book 1995 Springer Science+Business Media B.V. 1995 Dimension.Grad.algebraic group.algorithms.d

[復(fù)制鏈接]
樓主: 故障
31#
發(fā)表于 2025-3-27 00:53:53 | 只看該作者
On the Markus-Yamabe ConjectureThe so called . or . (MYC(n)) is as follows:.If . ∈ ..(?., ?.) satisfies the so called Markus — Yamabe Condition, i.e. for all . ∈ ?. all eigenvalues of . (.) have a negative real part and if .(0) = 0, then 0 is a global attractor of the ODE
32#
發(fā)表于 2025-3-27 04:23:34 | 只看該作者
33#
發(fā)表于 2025-3-27 05:38:55 | 只看該作者
34#
發(fā)表于 2025-3-27 10:38:36 | 只看該作者
35#
發(fā)表于 2025-3-27 15:38:27 | 只看該作者
An Algorithm that Determines whether a Polynomial Map is BijectiveOne of the central problems in the study of polynomial maps is the determination of the bijective ones. Although there are many results in the literature on this subject, they can not be used on polynomial maps of high degrees due to memory limitation or the complexity of the algorithm.
36#
發(fā)表于 2025-3-27 21:24:42 | 只看該作者
37#
發(fā)表于 2025-3-27 21:59:03 | 只看該作者
38#
發(fā)表于 2025-3-28 03:41:15 | 只看該作者
978-90-481-4566-9Springer Science+Business Media B.V. 1995
39#
發(fā)表于 2025-3-28 09:00:53 | 只看該作者
https://doi.org/10.1007/978-1-349-08810-2rs and ?:= the complex numbers. Furthermore . will denote an arbitrary field and . = (.., ..., ..): .. → .. a . i.e. a map of the form . where each .. belongs to the polynomial ring .[.]: = .[.., ..., ..].
40#
發(fā)表于 2025-3-28 14:10:36 | 只看該作者
,Goldsmith’s Singularities and Merits,espect is “Geometric Invariant Theory” of Mumford (see [15]). The major part of the book only concerns reductive groups. More recently some work has been done to do similar things for general algebraic groups (see [8], [5], [6], [7] and [4]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐县| 阜城县| 贵德县| 江陵县| 澄迈县| 呼伦贝尔市| 灵寿县| 英德市| 土默特右旗| 布拖县| 北川| 临漳县| 阿拉尔市| 深水埗区| 玉溪市| 大关县| 眉山市| 壤塘县| 习水县| 南宁市| 秦皇岛市| 达州市| 桓台县| 营口市| 府谷县| 饶河县| 安岳县| 英超| 桂东县| 长垣县| 乌兰察布市| 盐源县| 呼和浩特市| 宝山区| 广州市| 囊谦县| 保亭| 泸水县| 邛崃市| 黄大仙区| 昔阳县|