找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphisms of Affine Spaces; Arno Essen Book 1995 Springer Science+Business Media B.V. 1995 Dimension.Grad.algebraic group.algorithms.d

[復制鏈接]
查看: 34365|回復: 57
樓主
發(fā)表于 2025-3-21 18:19:11 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Automorphisms of Affine Spaces
影響因子2023Arno Essen
視頻videohttp://file.papertrans.cn/167/166636/166636.mp4
圖書封面Titlebook: Automorphisms of Affine Spaces;  Arno Essen Book 1995 Springer Science+Business Media B.V. 1995 Dimension.Grad.algebraic group.algorithms.d
影響因子.Automorphisms of Affine Spaces. describes the latestresults concerning several conjectures related to polynomialautomorphisms: the Jacobian, real Jacobian, Markus-Yamabe,Linearization and tame generators conjectures. Group actions anddynamical systems play a dominant role. Several contributions are ofan expository nature, containing the latest results obtained by theleaders in the field. The book also contains a concise introduction tothe subject of invertible polynomial maps which formed the basis ofseven lectures given by the editor prior to the main conference. ..Audience.: A good introduction for graduate students and researchmathematicians interested in invertible polynomial maps. .
Pindex Book 1995
The information of publication is updating

書目名稱Automorphisms of Affine Spaces影響因子(影響力)




書目名稱Automorphisms of Affine Spaces影響因子(影響力)學科排名




書目名稱Automorphisms of Affine Spaces網(wǎng)絡公開度




書目名稱Automorphisms of Affine Spaces網(wǎng)絡公開度學科排名




書目名稱Automorphisms of Affine Spaces被引頻次




書目名稱Automorphisms of Affine Spaces被引頻次學科排名




書目名稱Automorphisms of Affine Spaces年度引用




書目名稱Automorphisms of Affine Spaces年度引用學科排名




書目名稱Automorphisms of Affine Spaces讀者反饋




書目名稱Automorphisms of Affine Spaces讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:52:57 | 只看該作者
The Jacobian Conjecture: Some Steps towards Solutionneous polynomial mapping. We present recent contributions to the problem, among others we show why the answer is positive for maps ., when . has only non-negative coefficients. We also point out the Global Stability Problem for polynomial transformations of ?., when n > 2 (note that for .. mappings
板凳
發(fā)表于 2025-3-22 00:29:41 | 只看該作者
地板
發(fā)表于 2025-3-22 04:33:07 | 只看該作者
Polyomorphisms Conjugate to Dilations . variables (.., .., ... , ..) = . ∈ ?.. The question, first raised by O.-H. Keller in 1939 [10] for polynomials over the integers but now also raised for complex polynomials and, as such, known as . (.), asks whether a . map . with nonzero constant Jacobian determinant det .(.) need be a .: I.e.,
5#
發(fā)表于 2025-3-22 12:06:00 | 只看該作者
6#
發(fā)表于 2025-3-22 16:51:20 | 只看該作者
7#
發(fā)表于 2025-3-22 18:06:15 | 只看該作者
Quotients of Algebraic Group Actionsespect is “Geometric Invariant Theory” of Mumford (see [15]). The major part of the book only concerns reductive groups. More recently some work has been done to do similar things for general algebraic groups (see [8], [5], [6], [7] and [4]).
8#
發(fā)表于 2025-3-23 00:06:27 | 只看該作者
A Note on Nagata’s Automorphisme Bruhat decomposition at the level of the jacobian of the transformations involved and the product rules of double classes, we show that certain types of factorizations are impossible for this automorphism.
9#
發(fā)表于 2025-3-23 05:12:44 | 只看該作者
Golden Years of Australian Radio Astronomymorphic to the group .[.] of automorphisms . of the polynomial ring ?[.] by means of the correspondence .(.) = . where .(..) = ..(.). Polynomial maps .(.) satisfying det .(.) = . ≠ 0 are called .. We can and do assume that .(0) = 0 and .(0) = .. Five main problems arise:
10#
發(fā)表于 2025-3-23 09:19:42 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
张家港市| 五家渠市| 应用必备| 班玛县| 东城区| 陕西省| 工布江达县| 长阳| 兴山县| 枣强县| 霸州市| 宜黄县| 肥城市| 精河县| 孟连| 会宁县| 石景山区| 博湖县| 金昌市| 阳山县| 贵港市| 溆浦县| 汝阳县| 宿迁市| 合阳县| 台州市| 永定县| 冀州市| 桃源县| 虞城县| 呼和浩特市| 乌兰察布市| 慈利县| 奎屯市| 宣化县| 平果县| 德江县| 梁山县| 靖安县| 保康县| 长宁县|