找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automatic Control, Robotics, and Information Processing; Piotr Kulczycki,Józef Korbicz,Janusz Kacprzyk Book 2021 The Editor(s) (if applica

[復(fù)制鏈接]
樓主: INFER
31#
發(fā)表于 2025-3-27 00:27:04 | 只看該作者
H. R. Zurbrügg,M. Wied,R. Hetzerector field orientation method. All the presented algorithms have been extended by the authors with a collision avoidance mechanism based on the artificial potentials functions. For each of them, stability analysis was conducted using Lyapunov method. Both stability analysis and numerical verificati
32#
發(fā)表于 2025-3-27 01:56:45 | 只看該作者
Piotr Kulczycki,Józef Korbicz,Janusz KacprzykDevelops more effective and efficient tools and techniques for dealing with complex processes and systems.Presents a wide and comprehensive range of issues and problems in Automatic Control, Robotics,
33#
發(fā)表于 2025-3-27 05:49:00 | 只看該作者
34#
發(fā)表于 2025-3-27 13:31:26 | 只看該作者
35#
發(fā)表于 2025-3-27 14:49:00 | 只看該作者
978-3-030-48589-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
36#
發(fā)表于 2025-3-27 19:50:57 | 只看該作者
Book 2021ed perspectives. The desire to develop more effective and efficient tools and techniques for dealing with complex processes and systems has been a natural inspiration for the emergence of numerous fields of science and technology, in particular control and automation and, more recently, robotics. Th
37#
發(fā)表于 2025-3-27 22:40:50 | 只看該作者
38#
發(fā)表于 2025-3-28 04:28:05 | 只看該作者
39#
發(fā)表于 2025-3-28 07:11:13 | 只看該作者
Positive Linear Control Systemse given. The Kharitonov theorem is extended to positive linear systems with interval state matrices. The notions of the convex combinations of Hurwitz polynomials and Schur polynomials and of the state matrices are introduced. The considerations are illustrated by numerical examples of positive linear continuous-time and discrete-time systems.
40#
發(fā)表于 2025-3-28 12:28:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰和县| 当雄县| 建德市| 新兴县| 阿勒泰市| 通州市| 霸州市| 汉沽区| 南充市| 和龙市| 清原| 上蔡县| 江城| 兴城市| 鄄城县| 平武县| 同心县| 永定县| 内乡县| 胶州市| 秭归县| 尉氏县| 大邑县| 荥阳市| 景德镇市| 株洲县| 荆州市| 井陉县| 互助| 仲巴县| 仁化县| 阜宁县| 治多县| 稻城县| 东乡县| 托里县| 米林县| 灵寿县| 泌阳县| 郸城县| 禄丰县|