找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors Under Discretisation; Xiaoying Han,Peter Kloeden Book 2017 The Author(s) 2017 One step numerical schemes.Autonomous dynamicl sy

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:48:47 | 只看該作者
Linear SystemsStability of linear systems by eigenvalue conditions is introduced. Stability conditions for one and two dimensional, as well as general linear systems, are established.
22#
發(fā)表于 2025-3-25 08:38:05 | 只看該作者
Lyapunov FunctionsLyapunov functions are defined and used to investigate the stability of the zero solution to Euler schemes for linear and nonlinear ODEs.
23#
發(fā)表于 2025-3-25 13:35:58 | 只看該作者
Dissipative Systems with Steady StatesThe preservation or stability of the zero solution to Euler schemes for dissipative systems is established using Lyapunov functions.
24#
發(fā)表于 2025-3-25 16:09:04 | 只看該作者
Saddle Points Under DiscretisationSaddle points for Euler schemes for ODEs are discussed. Numerical stable and unstable manifolds are illustrated through a set of examples, and compared to the stable and unstable manifolds of the ODEs. The shadowing phenomenon is briefly illustrated. Finally, Beyn’s Theorem is presented.
25#
發(fā)表于 2025-3-25 21:41:28 | 只看該作者
Dissipative Systems with AttractorsEuler schemes for dissipative ODE systems with attractors are presented and shown to possess numerical attractors that converge to the ODE attractors upper semi continuously. A counterexample shows that the numerical attractor need not convergence lower semi continuously.
26#
發(fā)表于 2025-3-26 02:27:47 | 只看該作者
27#
發(fā)表于 2025-3-26 05:35:30 | 只看該作者
Discretisation of an Attractor: General CaseKloeden and Lorenz’s Theorem on the existence of a maximal numerical attractor of one step numerical schemes for general autonomous ODEs with a global attractor is stated and proved.
28#
發(fā)表于 2025-3-26 10:06:31 | 只看該作者
29#
發(fā)表于 2025-3-26 14:01:50 | 只看該作者
30#
發(fā)表于 2025-3-26 18:50:33 | 只看該作者
Variable Step Size Discretisation of Autonomous AttractorsDiscretising autonomous ODEs with variable step size results in discrete nonautonomous semi-dynamical systems. Numerical omega limit sets for such dynamical systems are constructed and shown to converge to the attractor for the ODEs upper semi continuously.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
微博| 舟曲县| 蒙自县| 阿城市| 玉树县| 二连浩特市| 蛟河市| 射阳县| 西林县| 石狮市| 固阳县| 平南县| 沁水县| 尚志市| 英德市| 尚志市| 璧山县| 肥东县| 仁布县| 腾冲县| 巴林右旗| 玉树县| 乌海市| 萍乡市| 惠州市| 东城区| 牡丹江市| 义马市| 卫辉市| 金堂县| 泾川县| 科尔| 佛教| 务川| 盈江县| 文昌市| 安吉县| 南陵县| 搜索| 自贡市| 凤台县|