找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors Under Discretisation; Xiaoying Han,Peter Kloeden Book 2017 The Author(s) 2017 One step numerical schemes.Autonomous dynamicl sy

[復制鏈接]
樓主: 古生物學
11#
發(fā)表于 2025-3-23 11:48:24 | 只看該作者
12#
發(fā)表于 2025-3-23 17:48:11 | 只看該作者
Produktdesign: Materialeigenschaften,Saddle points for Euler schemes for ODEs are discussed. Numerical stable and unstable manifolds are illustrated through a set of examples, and compared to the stable and unstable manifolds of the ODEs. The shadowing phenomenon is briefly illustrated. Finally, Beyn’s Theorem is presented.
13#
發(fā)表于 2025-3-23 19:21:14 | 只看該作者
Ram K. Mishra,Glen B. Baker,Alan A. BoultonEuler schemes for dissipative ODE systems with attractors are presented and shown to possess numerical attractors that converge to the ODE attractors upper semi continuously. A counterexample shows that the numerical attractor need not convergence lower semi continuously.
14#
發(fā)表于 2025-3-23 22:21:50 | 只看該作者
15#
發(fā)表于 2025-3-24 04:03:18 | 只看該作者
16#
發(fā)表于 2025-3-24 09:56:12 | 只看該作者
Stephanie J. Walker,H. Alex BrownNonautonomous dynamical systems and their omega limit sets are defined. The concepts of positive and negative asymptotic invariance are defined. The omega limit sets for dissipative nonautonomous dynamical systems are shown to be positive and negative asymptotic invariant under certain conditions.
17#
發(fā)表于 2025-3-24 12:48:07 | 只看該作者
https://doi.org/10.1385/1592594301Numerical nonautonomous omega limit sets for nonautonomous ODEs are constructed by using the implicit Euler scheme and shown to converge to the omega limit sets for the ODEs upper semi continuously.
18#
發(fā)表于 2025-3-24 17:57:23 | 只看該作者
19#
發(fā)表于 2025-3-24 21:54:44 | 只看該作者
Patricia M. Hinkle,John A. PuskasPullback and forward attractors for skew product flows are introduced, then the implicit Euler numerical scheme is applied to obtain a discrete time skew product flow. Existence of a numerical attractor for this discrete time skew product flow is established for sufficiently small step size.
20#
發(fā)表于 2025-3-25 00:29:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
江山市| 渭源县| 牙克石市| 嘉兴市| 萨迦县| 衡阳市| 贞丰县| 大港区| 五原县| 鸡泽县| 明水县| 台东县| 德格县| 东山县| 宽甸| 贵阳市| 平湖市| 北海市| 靖江市| 民乐县| 娄底市| 苏尼特左旗| 海口市| 佛坪县| 浙江省| 邛崃市| 赞皇县| 固阳县| 合江县| 黑水县| 海城市| 竹溪县| 通海县| 大邑县| 和政县| 墨玉县| 孟连| 平顺县| 运城市| 山阴县| 文山县|