找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractivity and Bifurcation for Nonautonomous Dynamical Systems; Martin Rasmussen Book 2007 Springer-Verlag Berlin Heidelberg 2007 Nonaut

[復(fù)制鏈接]
樓主: 胃口
31#
發(fā)表于 2025-3-26 21:14:23 | 只看該作者
Notions of Attractivity and Bifurcation,for nonautonomous dynamical systems. By a bifurcation and transition, a qualitative change of attractivity or repulsivity is meant. Due to the nonautonomous framework, it is distinguished between four distinct points of view concerning di.erent time domains. The notions of attractivity and repulsivi
32#
發(fā)表于 2025-3-27 01:23:05 | 只看該作者
Nonautonomous Morse Decompositions,s intersections of attractors and repellers. In this chapter, nonautonomous generalizations of the Morse decomposition are established with respect to the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapun
33#
發(fā)表于 2025-3-27 05:39:14 | 只看該作者
LinearSystems,ues requires linear theory. This is due to the fact that in many cases, stability properties of solutions can be derived from the linearization along the solution, the so-called variational equation. In this chapter, methods are provided for the analysis of linear systems with respect to the notions
34#
發(fā)表于 2025-3-27 13:26:48 | 只看該作者
Nonlinear Systems,r an equilibrium, a periodic solution or—in the nonautonomous context—an arbitrary solution. The construction of stable and unstable invariant manifolds goes back to . [136] and . [73]. In the sequel, the theory was extended from hyperbolic to nonhyperbolic systems, from finite to infinite dimension
35#
發(fā)表于 2025-3-27 14:46:51 | 只看該作者
Bifurcations in Dimension One,pitchfork bifurcation, both for nonautonomous bifurcations and transitions..In this chapter, only the continuous case of ordinary differential equations is treated. For analogous results in the context of difference equations, see . [145].
36#
發(fā)表于 2025-3-27 19:40:40 | 只看該作者
9樓
37#
發(fā)表于 2025-3-27 22:02:13 | 只看該作者
9樓
38#
發(fā)表于 2025-3-28 05:32:53 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 09:15:39 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 11:26:38 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 05:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴川市| 定结县| 梧州市| 潼关县| 秦皇岛市| 株洲市| 阳新县| 常州市| 定日县| 旺苍县| 华容县| 安徽省| 扶沟县| 基隆市| 南汇区| 涿鹿县| 攀枝花市| 洞口县| 册亨县| 烟台市| 江安县| 调兵山市| 抚顺县| 乌恰县| 含山县| 嘉义市| 庆元县| 都匀市| 长治县| 从化市| 尼玛县| 松溪县| 寻甸| 徐州市| 松江区| 兴国县| 体育| 商水县| 紫金县| 汝城县| 河源市|