找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractivity and Bifurcation for Nonautonomous Dynamical Systems; Martin Rasmussen Book 2007 Springer-Verlag Berlin Heidelberg 2007 Nonaut

[復(fù)制鏈接]
樓主: 胃口
11#
發(fā)表于 2025-3-23 11:40:55 | 只看該作者
Guillaume Flandin,Marianne J. U. Novaks intersections of attractors and repellers. In this chapter, nonautonomous generalizations of the Morse decomposition are established with respect to the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapun
12#
發(fā)表于 2025-3-23 15:17:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:01:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:35:48 | 只看該作者
Lucie Hertz-Pannier,Marion Noulhianepitchfork bifurcation, both for nonautonomous bifurcations and transitions..In this chapter, only the continuous case of ordinary differential equations is treated. For analogous results in the context of difference equations, see . [145].
15#
發(fā)表于 2025-3-24 04:43:56 | 只看該作者
Attractivity and Bifurcation for Nonautonomous Dynamical Systems
16#
發(fā)表于 2025-3-24 08:08:49 | 只看該作者
17#
發(fā)表于 2025-3-24 11:48:32 | 只看該作者
18#
發(fā)表于 2025-3-24 16:36:59 | 只看該作者
Guillaume Flandin,Marianne J. U. Novak the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapunov functions which are constant on the Morse sets are constructed explicitly. Furthermore, Morse decompositions of one-dimensional and linear systems are analyzed.
19#
發(fā)表于 2025-3-24 20:58:30 | 只看該作者
Christoph Kayser,Nikos K. Logothetisthe solution, the so-called variational equation. In this chapter, methods are provided for the analysis of linear systems with respect to the notions of attractivity and repulsivity which have been introduced in Chapter 2.
20#
發(fā)表于 2025-3-25 01:19:58 | 只看該作者
Neuroanatomy and Cortical Landmarksds goes back to . [136] and . [73]. In the sequel, the theory was extended from hyperbolic to nonhyperbolic systems, from finite to infinite dimension and from time-independent to time-dependent equations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 05:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西丰县| 通江县| 抚顺县| 杭州市| 贵州省| 客服| 喀喇沁旗| 丽水市| 武穴市| 雅安市| 新郑市| 舒兰市| 石家庄市| 手机| 遂川县| 行唐县| 甘孜县| 乌拉特前旗| 湾仔区| 玉环县| 江孜县| 闻喜县| 湾仔区| 油尖旺区| 和政县| 泗阳县| 张家港市| 高安市| 南安市| 汝州市| 大新县| 和田市| 商都县| 石台县| 团风县| 寿光市| 怀仁县| 温泉县| 藁城市| 图们市| 社旗县|