找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Attractive Ellipsoids in Robust Control; Alexander Poznyak,Andrey Polyakov,Vadim Azhmyakov Book 2014 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: 有作用
41#
發(fā)表于 2025-3-28 18:03:15 | 只看該作者
,Production of F′ centers by x-rays,certain systems, considered here, are governed by vector ordinary differential equations with so-called quasi-Lipschitz right-hand sides admitting a wide class of external and internal uncertainties (including discontinuous nonlinearities such as relay and hysteresis elements, time-delay blocks, and
42#
發(fā)表于 2025-3-28 22:38:45 | 只看該作者
,Positron annihilation at F′ centers,utput measurable signal, observer-based feedback proportional to the state estimation vector, and full-order linear dynamic controllers. For each type of possible linear feedback, we suggest that one characterize the set of all stabilizing gain-feedback matrices by a system of the corresponding line
43#
發(fā)表于 2025-3-29 00:43:27 | 只看該作者
,F′ centers in impure alkali halides,and quantized. Using the attractive ellipsoid method, which is based on Lyapunov analysis techniques, together with the relaxation of a nonlinear optimization problem, sufficient conditions for the design of a robust control law are obtained. Since the original conditions result in nonlinear matrix
44#
發(fā)表于 2025-3-29 04:22:52 | 只看該作者
45#
發(fā)表于 2025-3-29 10:59:52 | 只看該作者
Thermally-stimulated phenomena,is based on the appropriate selection of a sliding surface via the invariant ellipsoid method. The designed control guarantees minimization of unmatched disturbance effects to system motions in a sliding mode. The theoretical results are verified by numerical simulations. Additionally, a methodology
46#
發(fā)表于 2025-3-29 11:46:56 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渑池县| 正蓝旗| 义马市| 宜阳县| 涞源县| 正镶白旗| 拉萨市| 丰台区| 平罗县| 盖州市| 九龙县| 江都市| 新巴尔虎左旗| 新安县| 安西县| 石首市| 彩票| 通渭县| 济宁市| 都安| 卢湾区| 若羌县| 西丰县| 鹤壁市| 清远市| 深州市| 固始县| 彭州市| 甘孜| 岐山县| 满洲里市| 奉贤区| 灵璧县| 广丰县| 府谷县| 巴楚县| 固始县| 栾城县| 新源县| 湖州市| 泰州市|