找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractive Ellipsoids in Robust Control; Alexander Poznyak,Andrey Polyakov,Vadim Azhmyakov Book 2014 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: 有作用
11#
發(fā)表于 2025-3-23 10:00:21 | 只看該作者
12#
發(fā)表于 2025-3-23 16:31:04 | 只看該作者
,F′ formation by pulsed radiolysis, are also included. Moreover, we take a quick look at the basic computational tool for our problems, namely, at linear matrix inequality techniques. We focus our attention primarily on motivations of the proposed “attractive ellipsoid” method and illustrate it in some simple situations.
13#
發(fā)表于 2025-3-23 19:35:05 | 只看該作者
,F′ centers in impure alkali halides,inequalities, a numerical algorithm to obtain the solution is presented. The obtained control ensures that the trajectories of the closed-loop system will converge to a minimal (in a sense to be made specific) ellipsoidal region. Finally, numerical examples are presented to illustrate the applicability of the proposed design method.
14#
發(fā)表于 2025-3-24 01:14:53 | 只看該作者
,F′ centers in impure alkali halides,. The stability/robustness analysis of the resulting closed-loop system involves a modified descriptor approach associated with the usual Lyapunov-type methodology. The theoretical schemes elaborated in our contribution are finally illustrated by a simple computational example.
15#
發(fā)表于 2025-3-24 06:00:36 | 只看該作者
Book 2014ve ellipsoid method.” Along with a coherent introduction to the proposed control design and related topics, the monograph studies nonlinear affine control systems in the presence of uncertainty and presents a constructive and easily implementable control strategy that guarantees certain stability pr
16#
發(fā)表于 2025-3-24 09:30:33 | 只看該作者
,F′ centers in impure alkali halides,ameters participating in constraints that characterize the class of adaptive stabilizing feedbacks. The proposed method guarantees that under a specific persistent excitation condition, the controlled system trajectories converge to an ellipsoid of “minimal size” having a minimal trace of the corresponding inverse ellipsoidal matrix.
17#
發(fā)表于 2025-3-24 13:50:46 | 只看該作者
18#
發(fā)表于 2025-3-24 18:36:51 | 只看該作者
2324-9749 systems.All subclasses of uncertain systems are treated withThis monograph introduces a newly developed robust-control design technique for a wide class of continuous-time dynamical systems called the “attractive ellipsoid method.” Along with a coherent introduction to the proposed control design an
19#
發(fā)表于 2025-3-24 21:42:28 | 只看該作者
,F′ formation by pulsed radiolysis,m a given class to an ellipsoid whose “size” depends on the parameters of the applied feedback. Finally, we present a method for numerical calculation of these parameters that provides the “smallest” zone convergence for controlled trajectories.
20#
發(fā)表于 2025-3-25 00:37:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
冀州市| 临泽县| 奉节县| 葫芦岛市| 修水县| 会宁县| 胶南市| 砚山县| 伊宁市| 塔城市| 左贡县| 高阳县| 赤水市| 田阳县| 红河县| 祁东县| 当涂县| 高阳县| 蚌埠市| 内丘县| 阳西县| 林西县| 东方市| 绍兴县| 邯郸市| 思南县| 饶河县| 达日县| 蒙城县| 陕西省| 会同县| 肥乡县| 阳城县| 大冶市| 松原市| 太谷县| 巴里| 板桥市| 宁安市| 石棉县| 革吉县|