找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractive Ellipsoids in Robust Control; Alexander Poznyak,Andrey Polyakov,Vadim Azhmyakov Book 2014 Springer International Publishing Swi

[復(fù)制鏈接]
查看: 53568|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:03:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Attractive Ellipsoids in Robust Control
影響因子2023Alexander Poznyak,Andrey Polyakov,Vadim Azhmyakov
視頻videohttp://file.papertrans.cn/165/164911/164911.mp4
發(fā)行地址Presents numerical procedures for designing robust and adaptive-robust feedbacks.Covers a wide class of quasi-Lipschitz nonlinear uncertain systems.All subclasses of uncertain systems are treated with
學(xué)科分類Systems & Control: Foundations & Applications
圖書封面Titlebook: Attractive Ellipsoids in Robust Control;  Alexander Poznyak,Andrey Polyakov,Vadim Azhmyakov Book 2014 Springer International Publishing Swi
影響因子This monograph introduces a newly developed robust-control design technique for a wide class of continuous-time dynamical systems called the “attractive ellipsoid method.” Along with a coherent introduction to the proposed control design and related topics, the monograph studies nonlinear affine control systems in the presence of uncertainty and presents a constructive and easily implementable control strategy that guarantees certain stability properties. The authors discuss linear-style feedback control synthesis in the context of the above-mentioned systems. The development and physical implementation of high-performance robust-feedback controllers that work in the absence of complete information is addressed, with numerous examples to illustrate how to apply the attractive ellipsoid method to mechanical and electromechanical systems. While theorems are proved systematically, the emphasis is on understanding and applying the theory to real-world situations. Attractive Ellipsoids in Robust Control will appeal to undergraduate and graduate students with a background in modern systems theory as well as researchers in the fields of control engineering and applied mathematics.
Pindex Book 2014
The information of publication is updating

書目名稱Attractive Ellipsoids in Robust Control影響因子(影響力)




書目名稱Attractive Ellipsoids in Robust Control影響因子(影響力)學(xué)科排名




書目名稱Attractive Ellipsoids in Robust Control網(wǎng)絡(luò)公開度




書目名稱Attractive Ellipsoids in Robust Control網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Attractive Ellipsoids in Robust Control被引頻次




書目名稱Attractive Ellipsoids in Robust Control被引頻次學(xué)科排名




書目名稱Attractive Ellipsoids in Robust Control年度引用




書目名稱Attractive Ellipsoids in Robust Control年度引用學(xué)科排名




書目名稱Attractive Ellipsoids in Robust Control讀者反饋




書目名稱Attractive Ellipsoids in Robust Control讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:56:26 | 只看該作者
Robust Control of Implicit Systems,. The stability/robustness analysis of the resulting closed-loop system involves a modified descriptor approach associated with the usual Lyapunov-type methodology. The theoretical schemes elaborated in our contribution are finally illustrated by a simple computational example.
地板
發(fā)表于 2025-3-22 05:50:44 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:14 | 只看該作者
,Positron annihilation at F′ centers,f the attractive ellipsoid containing all possible bounded dynamic trajectories. The corresponding numerical procedures for designing the best feedback gain matrices are introduced and discussed for each type of considered feedback. Several illustrative examples clearly show the effectiveness of the suggested technique.
6#
發(fā)表于 2025-3-22 13:38:31 | 只看該作者
Thermally-stimulated phenomena,that the convergence to a quasiminimal region of the origin using the suboptimal control signal is guaranteed. The design procedure is given in terms of the solution of a set of matrix inequalities. Benchmark examples illustrating the design are given.
7#
發(fā)表于 2025-3-22 18:55:47 | 只看該作者
8#
發(fā)表于 2025-3-23 00:10:20 | 只看該作者
9#
發(fā)表于 2025-3-23 05:22:51 | 只看該作者
Robust Output Feedback Control,f the attractive ellipsoid containing all possible bounded dynamic trajectories. The corresponding numerical procedures for designing the best feedback gain matrices are introduced and discussed for each type of considered feedback. Several illustrative examples clearly show the effectiveness of the suggested technique.
10#
發(fā)表于 2025-3-23 07:55:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广汉市| 梅河口市| 贵港市| 称多县| 清水河县| 济宁市| 怀安县| 南雄市| 兴化市| 铁岭县| 南陵县| 红原县| 潮州市| 德保县| 分宜县| 正阳县| 奉节县| 天柱县| 五河县| 海晏县| 马龙县| 长顺县| 五指山市| 沂水县| 辉县市| 吉木乃县| 双流县| 乡宁县| 怀化市| 温泉县| 巩留县| 吉林省| 都昌县| 托克逊县| 淮阳县| 民丰县| 石渠县| 依安县| 平邑县| 昌邑市| 黔江区|