找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Volume I Vladimir Maz’ya,Serguei Nazarov,Boris A. Pl

[復制鏈接]
樓主: monster
41#
發(fā)表于 2025-3-28 15:06:00 | 只看該作者
Sequent Calculus in the Topos of Treesolutions to boundary value problems involving the Laplace operator in domains with small variations of the boundary. On the other hand, this chapter illustrates the general theory of elliptic boundary value problems in domains with cone vertices, which is briefly presented in Chapter 3. (Therefore w
42#
發(fā)表于 2025-3-28 21:07:38 | 只看該作者
An Infinitary Model of Linear Logic the same problems as in the first chapter, but now the boundaries of the domains depend also on a small parameter ε. This dependence is such that the limit boundary (i.e. that for ε = 0) is not smooth; it contains isolated points or vertices of sectors or cones.
43#
發(fā)表于 2025-3-29 02:50:40 | 只看該作者
Michael A. Bukatin,Svetlana Yu. Shorinaf the boundaries, after that we study the asymptotics of the solutions of boundary value problems in domains that are perturbed near such singularities. However, in contrast to the first part we consider here general elliptic boundary value problems. The reader who is interested only in concrete pro
44#
發(fā)表于 2025-3-29 04:20:23 | 只看該作者
Pumping Lemmas for timed automata,ingular perturbation of the limit domain Ω whose boundary contains a finite number of cone vertices. The complete asymptotic expansions will be constructed and justified. The present chapter provides the basis for further study of special singularly perturbed boundary value problems. The general res
45#
發(fā)表于 2025-3-29 10:24:15 | 只看該作者
46#
發(fā)表于 2025-3-29 12:43:07 | 只看該作者
Equational Properties of Mobile Ambients, conic points were found in Chapters 2, 4 and 5. Now we use the general methodology developed in Chapter 4 to determine the asymptotic behaviour of certain functionals on solutions in the neighborhood of conic points that are close to each other.
47#
發(fā)表于 2025-3-29 16:22:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 23:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
潜江市| 调兵山市| 星座| 巫溪县| 徐闻县| 平遥县| 朝阳县| 同仁县| 定结县| 科技| 托克托县| 都昌县| 晋城| 伊宁县| 五大连池市| 盘山县| 科技| 饶平县| 色达县| 闻喜县| 永济市| 枣强县| 南阳市| 蓝山县| 通江县| 罗甸县| 黄陵县| 麦盖提县| 托克托县| 涿州市| 南丰县| 双峰县| 永泰县| 原阳县| 丹江口市| 竹山县| 平湖市| 株洲县| 浦城县| 夹江县| 兖州市|