找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Volume I Vladimir Maz’ya,Serguei Nazarov,Boris A. Pl

[復(fù)制鏈接]
樓主: monster
11#
發(fā)表于 2025-3-23 10:20:33 | 只看該作者
0255-0156 of elliptic boundary value problems in singularly perturbed domains. This first volume is devoted to domains whose boundary is smooth in the neighborhood of finitely many conical points. In particular, the theory encompasses the important case of domains with small holes. The second volume, on the
12#
發(fā)表于 2025-3-23 16:40:38 | 只看該作者
13#
發(fā)表于 2025-3-23 20:01:47 | 只看該作者
14#
發(fā)表于 2025-3-24 00:42:49 | 只看該作者
Dirichlet and Neumann Problems for the Laplace Operator in Domains with Corners and Cone Verticesllustrates the general theory of elliptic boundary value problems in domains with cone vertices, which is briefly presented in Chapter 3. (Therefore we refrain from using expansions by the eigenfunctions of the Beltrami operator, which lead to the same results in the case of the Poisson equation.)
15#
發(fā)表于 2025-3-24 04:48:54 | 只看該作者
Elliptic Boundary Value Problems in Domains with Smooth Boundaries, in a Cylinder, and in Domains wis. However, in contrast to the first part we consider here general elliptic boundary value problems. The reader who is interested only in concrete problems of mathematical physics may restrict himself to a superficial reading of Chapters 3–5.
16#
發(fā)表于 2025-3-24 07:43:53 | 只看該作者
17#
發(fā)表于 2025-3-24 14:44:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:31:48 | 只看該作者
Martin Berger,Kohei Honda,Nobuko Yoshidain perturbed in the neighborhood of a corner. The necessary facts concerning behaviour of the solutions of problems of the theory of elasticity in a neighborhood of the sector vertex are put together in 8.5.
19#
發(fā)表于 2025-3-24 20:17:52 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平凉市| 黔西| 石台县| 合江县| 安泽县| 桂东县| 满城县| 康保县| 山东省| 金山区| 沅陵县| 静安区| 石渠县| 郎溪县| 江门市| 土默特右旗| 玛沁县| 汝阳县| 左云县| 海口市| 黄浦区| 仙居县| 浪卡子县| 南平市| 宣武区| 屯昌县| 无极县| 新宾| 分宜县| 富川| 兴化市| 泽普县| 建昌县| 巩义市| 蕲春县| 临沧市| 两当县| 句容市| 吉首市| 湾仔区| 友谊县|