找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Integration of Differential and Difference Equations; Sigrun Bodine,Donald A. Lutz Book 2015 Springer International Publishing

[復(fù)制鏈接]
樓主: retort
21#
發(fā)表于 2025-3-25 06:01:47 | 只看該作者
Asymptotics for Dynamic Equations on Time Scales,e them are closely related. So it is natural to ask for a framework which would encompass both sets of results as well as including some generalizations. One possibility for doing this has been discussed by Spigler and Vianello [143].
22#
發(fā)表于 2025-3-25 11:33:46 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:52 | 只看該作者
Beyond the Basics in CSS and Scripting,In this chapter we will consider linear systems of the form ..?=?.(.). and discuss various procedures which may be used for transforming such a system (if possible) into an .-diagonal form, so that the theorems in Chap.?. could be used to obtain an asymptotic representation for solutions.
24#
發(fā)表于 2025-3-25 16:47:53 | 只看該作者
25#
發(fā)表于 2025-3-25 23:11:45 | 只看該作者
Foundations of Microsoft Expression WebIn this brief chapter, we only consider perturbations of systems of difference equations with a single non-singular Jordan block. That is, we consider . Following the approach taken in Sect.?., the next theorem can be considered as a discrete counterpart of Corollary?., and its proof is parallel to the proof given in Theorem?..
26#
發(fā)表于 2025-3-26 03:19:22 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:59 | 只看該作者
https://doi.org/10.1007/978-1-4302-0392-6In this chapter we are interested in scalar .th-order linear difference equations (also called linear recurrence relations) of the form .
28#
發(fā)表于 2025-3-26 08:37:46 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:18 | 只看該作者
30#
發(fā)表于 2025-3-26 19:30:49 | 只看該作者
Conditioning Transformations for Difference Systems,In this chapter we will consider linear difference systems of the form ., where det?.(.) ≠ 0 for all .?≥?... Various procedures will be discussed (similar to those in the preceding chapter) for bringing such a system (if possible) into what we have called an .-diagonal form, so that the results of Chap.?. may be used.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
织金县| 东莞市| 蕲春县| 思茅市| 横峰县| 东安县| 集贤县| 神木县| 崇义县| 安新县| 从江县| 山西省| 卓资县| 辉县市| 民权县| 甘孜县| 体育| 承德市| 北票市| 来安县| 信宜市| 高州市| 微山县| 信阳市| 阿克| 珲春市| 含山县| 静乐县| 凤翔县| 诸暨市| 邳州市| 武平县| 乌兰浩特市| 岳普湖县| 合水县| 兖州市| 曲阳县| 邵阳市| 襄城县| 昌都县| 榆树市|