找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Integration of Differential and Difference Equations; Sigrun Bodine,Donald A. Lutz Book 2015 Springer International Publishing

[復(fù)制鏈接]
樓主: retort
21#
發(fā)表于 2025-3-25 06:01:47 | 只看該作者
Asymptotics for Dynamic Equations on Time Scales,e them are closely related. So it is natural to ask for a framework which would encompass both sets of results as well as including some generalizations. One possibility for doing this has been discussed by Spigler and Vianello [143].
22#
發(fā)表于 2025-3-25 11:33:46 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:52 | 只看該作者
Beyond the Basics in CSS and Scripting,In this chapter we will consider linear systems of the form ..?=?.(.). and discuss various procedures which may be used for transforming such a system (if possible) into an .-diagonal form, so that the theorems in Chap.?. could be used to obtain an asymptotic representation for solutions.
24#
發(fā)表于 2025-3-25 16:47:53 | 只看該作者
25#
發(fā)表于 2025-3-25 23:11:45 | 只看該作者
Foundations of Microsoft Expression WebIn this brief chapter, we only consider perturbations of systems of difference equations with a single non-singular Jordan block. That is, we consider . Following the approach taken in Sect.?., the next theorem can be considered as a discrete counterpart of Corollary?., and its proof is parallel to the proof given in Theorem?..
26#
發(fā)表于 2025-3-26 03:19:22 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:59 | 只看該作者
https://doi.org/10.1007/978-1-4302-0392-6In this chapter we are interested in scalar .th-order linear difference equations (also called linear recurrence relations) of the form .
28#
發(fā)表于 2025-3-26 08:37:46 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:18 | 只看該作者
30#
發(fā)表于 2025-3-26 19:30:49 | 只看該作者
Conditioning Transformations for Difference Systems,In this chapter we will consider linear difference systems of the form ., where det?.(.) ≠ 0 for all .?≥?... Various procedures will be discussed (similar to those in the preceding chapter) for bringing such a system (if possible) into what we have called an .-diagonal form, so that the results of Chap.?. may be used.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大余县| 望城县| 沈阳市| 榆中县| 会泽县| 上高县| 钦州市| 常宁市| 桂阳县| 邢台县| 沙雅县| 广宗县| 靖远县| 四川省| 景泰县| 青田县| 尼勒克县| 潍坊市| 平南县| 威信县| 施秉县| 铜山县| 封开县| 赞皇县| 房山区| 武鸣县| 赤峰市| 综艺| 海原县| 西乌珠穆沁旗| 衡水市| 昆山市| 哈尔滨市| 田阳县| 湖南省| 浏阳市| 泰来县| 杭州市| 莒南县| 连山| 宁国市|