找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Integration of Differential and Difference Equations; Sigrun Bodine,Donald A. Lutz Book 2015 Springer International Publishing

[復(fù)制鏈接]
樓主: retort
31#
發(fā)表于 2025-3-26 22:08:40 | 只看該作者
Perturbations of Jordan Difference Systems,In this brief chapter, we only consider perturbations of systems of difference equations with a single non-singular Jordan block. That is, we consider . Following the approach taken in Sect.?., the next theorem can be considered as a discrete counterpart of Corollary?., and its proof is parallel to the proof given in Theorem?..
32#
發(fā)表于 2025-3-27 04:15:47 | 只看該作者
Applications to Classes of Scalar Linear Differential Equations,In this chapter we consider various classes of .th-order (.?≥?2) linear homogeneous equations .
33#
發(fā)表于 2025-3-27 06:35:53 | 只看該作者
Applications to Classes of Scalar Linear Difference Equations,In this chapter we are interested in scalar .th-order linear difference equations (also called linear recurrence relations) of the form .
34#
發(fā)表于 2025-3-27 11:05:33 | 只看該作者
35#
發(fā)表于 2025-3-27 14:46:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:10:20 | 只看該作者
37#
發(fā)表于 2025-3-28 00:51:59 | 只看該作者
Foundations of Micropolar Thermoelasticityor the (unperturbed) system .′?=?.(.)., how “small” should the perturbation .(.) be so that we can determine an asymptotic behavior for solutions of (2.1)? This question is intentionally vague because depending upon the particular circumstances, there are many possible answers.
38#
發(fā)表于 2025-3-28 04:40:09 | 只看該作者
https://doi.org/10.1007/978-1-4302-0392-6e them are closely related. So it is natural to ask for a framework which would encompass both sets of results as well as including some generalizations. One possibility for doing this has been discussed by Spigler and Vianello [143].
39#
發(fā)表于 2025-3-28 09:25:35 | 只看該作者
40#
發(fā)表于 2025-3-28 12:23:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵化市| 长泰县| 长沙市| 怀仁县| 江西省| 鹤山市| 东乡县| 札达县| 龙南县| 蓬安县| 信丰县| 冷水江市| 资中县| 博爱县| 奈曼旗| 温宿县| 砀山县| 旬阳县| 泰州市| 贵定县| 盖州市| 江安县| 北宁市| 沈丘县| 双柏县| 湖南省| 福贡县| 互助| 哈巴河县| 阳信县| 南华县| 攀枝花市| 义马市| 偃师市| 南昌县| 苏州市| 彭州市| 涞水县| 湖口县| 林西县| 潜江市|