找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2010; 20th International C Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il Conference proceedings 201

[復(fù)制鏈接]
樓主: Reagan
51#
發(fā)表于 2025-3-30 11:31:49 | 只看該作者
Analyzing Classification Methods in Multi-label Tasksnnotation of images. This paper presents a comparative analysis of some existing multi-label classification methods applied to different domains. The main aim of this analysis is to evaluate the performance of such methods in different tasks and using different evaluation metrics.
52#
發(fā)表于 2025-3-30 14:27:28 | 只看該作者
Fiber Parameter Studies with the OTDRs has been done, but with cost functions that scale quadratically. Training a bottleneck classifier scales linearly, but still gives results comparable to or sometimes better than two earlier supervised methods.
53#
發(fā)表于 2025-3-30 18:00:19 | 只看該作者
J. J. Mecholsky,S. W. Freiman,S. M. Moreyexpression microarray datasets of different kinds of cancer. A comparative study with other classifiers such as Support Vector Machine (SVM), C4.5, na?ve Bayes and k-Nearest Neighbor is performed. Our approach shows excellent results outperforming all other classifiers.
54#
發(fā)表于 2025-3-31 00:02:37 | 只看該作者
https://doi.org/10.1007/978-3-662-52764-1The quality of the predictor is tested on a large test set of eye movement data and compared with the performance of two state-of-the-art saliency models on this data set. The proposed model demonstrates significant improvement – mean ROC score of 0.665 – over the selected baseline models with ROC scores of 0.625 and 0.635.
55#
發(fā)表于 2025-3-31 01:14:53 | 只看該作者
56#
發(fā)表于 2025-3-31 05:10:42 | 只看該作者
57#
發(fā)表于 2025-3-31 11:39:37 | 只看該作者
58#
發(fā)表于 2025-3-31 14:21:09 | 只看該作者
Deep Bottleneck Classifiers in Supervised Dimension Reductions has been done, but with cost functions that scale quadratically. Training a bottleneck classifier scales linearly, but still gives results comparable to or sometimes better than two earlier supervised methods.
59#
發(fā)表于 2025-3-31 19:15:53 | 只看該作者
Local Modeling Classifier for Microarray Gene-Expression Dataexpression microarray datasets of different kinds of cancer. A comparative study with other classifiers such as Support Vector Machine (SVM), C4.5, na?ve Bayes and k-Nearest Neighbor is performed. Our approach shows excellent results outperforming all other classifiers.
60#
發(fā)表于 2025-4-1 00:19:43 | 只看該作者
A Learned Saliency Predictor for Dynamic Natural ScenesThe quality of the predictor is tested on a large test set of eye movement data and compared with the performance of two state-of-the-art saliency models on this data set. The proposed model demonstrates significant improvement – mean ROC score of 0.665 – over the selected baseline models with ROC scores of 0.625 and 0.635.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西乌| 富宁县| 新兴县| 张掖市| 滨海县| 彭阳县| 平顶山市| 扬中市| 绥宁县| 呼图壁县| 鄱阳县| 大英县| 仲巴县| 庆城县| 峨眉山市| 和静县| 南投市| 霍城县| 永胜县| 新邵县| 桓仁| 抚州市| 天镇县| 科技| 东源县| 依安县| 区。| 响水县| 班戈县| 抚州市| 潞西市| 合肥市| 那曲县| 彭阳县| 北辰区| 隆子县| 咸阳市| 民勤县| 山丹县| 贵德县| 平泉县|