找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2010; 20th International C Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il Conference proceedings 201

[復(fù)制鏈接]
查看: 38129|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:07:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks - ICANN 2010
期刊簡(jiǎn)稱20th International C
影響因子2023Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il
視頻videohttp://file.papertrans.cn/163/162700/162700.mp4
發(fā)行地址Fast track conference proceeding.Unique visibility.State-of-the-art research
學(xué)科分類Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Artificial Neural Networks - ICANN 2010; 20th International C Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il Conference proceedings 201
影響因子th This volume is part of the three-volume proceedings of the 20 International Conference on Arti?cial Neural Networks (ICANN 2010) that was held in Th- saloniki, Greece during September 15–18, 2010. ICANN is an annual meeting sponsored by the European Neural Network Society (ENNS) in cooperation with the International Neural Network So- ety (INNS) and the Japanese Neural Network Society (JNNS). This series of conferences has been held annually since 1991 in Europe, covering the ?eld of neurocomputing, learning systems and other related areas. As in the past 19 events, ICANN 2010 provided a distinguished, lively and interdisciplinary discussion forum for researches and scientists from around the globe. Ito?eredagoodchanceto discussthe latestadvancesofresearchandalso all the developments and applications in the area of Arti?cial Neural Networks (ANNs). ANNs provide an information processing structure inspired by biolo- cal nervous systems and they consist of a large number of highly interconnected processing elements (neurons). Each neuron is a simple processor with a limited computing capacity typically restricted to a rule for combining input signals (utilizing an activation funct
Pindex Conference proceedings 2010
The information of publication is updating

書(shū)目名稱Artificial Neural Networks - ICANN 2010影響因子(影響力)




書(shū)目名稱Artificial Neural Networks - ICANN 2010影響因子(影響力)學(xué)科排名




書(shū)目名稱Artificial Neural Networks - ICANN 2010網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Artificial Neural Networks - ICANN 2010網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Artificial Neural Networks - ICANN 2010被引頻次




書(shū)目名稱Artificial Neural Networks - ICANN 2010被引頻次學(xué)科排名




書(shū)目名稱Artificial Neural Networks - ICANN 2010年度引用




書(shū)目名稱Artificial Neural Networks - ICANN 2010年度引用學(xué)科排名




書(shū)目名稱Artificial Neural Networks - ICANN 2010讀者反饋




書(shū)目名稱Artificial Neural Networks - ICANN 2010讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:50:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:56:28 | 只看該作者
地板
發(fā)表于 2025-3-22 08:06:03 | 只看該作者
5#
發(fā)表于 2025-3-22 10:14:08 | 只看該作者
Local Minima of a Quadratic Binary Functional with a Quasi-Hebbian Connection Matrix quasi-Hebbian expansion where each pattern is supplied with its own individual weight. For such matrices statistical physics methods allow one to derive an equation describing local minima of the functional. A model where only one weight differs from other ones is discussed in details. In this case
6#
發(fā)表于 2025-3-22 15:08:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:38:57 | 只看該作者
Learning a Combination of Heterogeneous Dissimilarities from Incomplete Knowledge of a good dissimilarity is a difficult task because each one reflects different features of the data. Therefore, different dissimilarities and data sources should be integrated in order to reflect more accurately which is similar for the user and the problem at hand..In many applications, the user
8#
發(fā)表于 2025-3-22 21:14:58 | 只看該作者
9#
發(fā)表于 2025-3-23 01:22:12 | 只看該作者
Accelerating Large-Scale Convolutional Neural Networks with Parallel Graphics Multiprocessors. Such architectures, however, achieve state-of-the-art results on low-resolution machine vision tasks such as recognition of handwritten characters. We have adapted the inherent multi-level parallelism of CNNs for Nvidia’s CUDA GPU architecture to accelerate the training by two orders of magnitude.
10#
發(fā)表于 2025-3-23 08:00:52 | 只看該作者
Evaluation of Pooling Operations in Convolutional Architectures for Object Recognitioner, the differences between those models makes a comparison of the properties of different aggregation functions hard. Our aim is to gain insight into different functions by directly comparing them on a fixed architecture for several common object recognition tasks. Empirical results show that a max
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 10:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广汉市| 张家界市| 万源市| 永康市| 吉木萨尔县| 蓬安县| 班玛县| 特克斯县| 综艺| 太仆寺旗| 丹阳市| 突泉县| 屏南县| 固安县| 建平县| 福贡县| 南川市| 确山县| 宽甸| 叙永县| 阿拉善盟| 重庆市| 亳州市| 西吉县| 宁乡县| 华池县| 嘉兴市| 万州区| 舟曲县| 余姚市| 垦利县| 安康市| 泗洪县| 修武县| 阳东县| 清远市| 荆门市| 祁东县| 淄博市| 宁陵县| 邓州市|