找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks in Pattern Recognition; Second IAPR Workshop Friedhelm Schwenker,Simone Marinai Conference proceedings 2006 Spri

[復制鏈接]
樓主: opioid
11#
發(fā)表于 2025-3-23 12:05:42 | 只看該作者
12#
發(fā)表于 2025-3-23 17:03:47 | 只看該作者
13#
發(fā)表于 2025-3-23 21:10:41 | 只看該作者
Incremental Training of Support Vector Machines Using Truncated Hyperconespercones. We generate the truncated surface with the center being the center of unbounded support vectors and with the radius being the maximum distance from the center to support vectors. We determine the hypercone surface so that it includes a datum, which is far away from the separating hyperplan
14#
發(fā)表于 2025-3-23 22:31:42 | 只看該作者
Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniqueslementation of decomposition techniques leads to infinite loops. To solve this problem and to further speed up training, in this paper, we propose an improved decomposition techniques for training LP-SVMs. If an infinite loop is detected, we include in the next working set all the data in the workin
15#
發(fā)表于 2025-3-24 04:45:54 | 只看該作者
Multiple Classifier Systems for Embedded String Patterns. However, there has been reported only little work on combining classifiers in structural pattern recognition. In this paper we describe a method for embedding strings into real vector spaces based on prototype selection, in order to gain several vectorial descriptions of the string data. We presen
16#
發(fā)表于 2025-3-24 07:42:44 | 只看該作者
17#
發(fā)表于 2025-3-24 12:29:11 | 只看該作者
Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theorye used to retrieve the classification result. More complex ways of evaluating the hierarchy output that take into account the complete information the hierarchy provides yield improved classification results. Due to the hierarchical output space decomposition that is inherent to hierarchical neural
18#
發(fā)表于 2025-3-24 16:36:09 | 只看該作者
Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalizationa single output. In this paper we focus on the combination module. We have proposed two methods based on . as the combination module of an ensemble of neural networks. In this paper we have performed a comparison among the two versions of . and six statistical combination methods in order to get the
19#
發(fā)表于 2025-3-24 20:52:07 | 只看該作者
https://doi.org/10.1007/11829898artificial neural network; bioinformatics; cognition; data mining; learning; neural network; pattern recog
20#
發(fā)表于 2025-3-25 02:01:07 | 只看該作者
978-3-540-37951-5Springer-Verlag GmbH Germany, part of Springer Nature 2006
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宾阳县| 游戏| 铁力市| 沙洋县| 紫金县| 新余市| 岑溪市| 思南县| 宣汉县| 循化| 天台县| 蓝田县| 乐都县| 交城县| 马鞍山市| 咸宁市| 留坝县| 鹰潭市| 炉霍县| 闽清县| 紫云| 定陶县| 仙游县| 阳高县| 涟源市| 安乡县| 新余市| 皋兰县| 马龙县| 青龙| 高台县| 河津市| 阿尔山市| 开远市| 濉溪县| 江门市| 兖州市| 高碑店市| 锡林郭勒盟| 元江| 自贡市|