找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks in Pattern Recognition; Second IAPR Workshop Friedhelm Schwenker,Simone Marinai Conference proceedings 2006 Spri

[復(fù)制鏈接]
查看: 25774|回復(fù): 65
樓主
發(fā)表于 2025-3-21 16:10:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks in Pattern Recognition
期刊簡稱Second IAPR Workshop
影響因子2023Friedhelm Schwenker,Simone Marinai
視頻videohttp://file.papertrans.cn/163/162681/162681.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks in Pattern Recognition; Second IAPR Workshop Friedhelm Schwenker,Simone Marinai Conference proceedings 2006 Spri
Pindex Conference proceedings 2006
The information of publication is updating

書目名稱Artificial Neural Networks in Pattern Recognition影響因子(影響力)




書目名稱Artificial Neural Networks in Pattern Recognition影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks in Pattern Recognition網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks in Pattern Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks in Pattern Recognition被引頻次




書目名稱Artificial Neural Networks in Pattern Recognition被引頻次學(xué)科排名




書目名稱Artificial Neural Networks in Pattern Recognition年度引用




書目名稱Artificial Neural Networks in Pattern Recognition年度引用學(xué)科排名




書目名稱Artificial Neural Networks in Pattern Recognition讀者反饋




書目名稱Artificial Neural Networks in Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:44 | 只看該作者
Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognitionbased on Self-Organizing Map (SOM) yielding to a Spatio-Temporel Organization Map (STOM). More precisely, the map is trained using two different spatio-temporal algorithms taking their roots in biological researches: The ST-Kohonen and the Time-Organized Map (TOM). These algorithms use two kinds of
板凳
發(fā)表于 2025-3-22 02:08:34 | 只看該作者
地板
發(fā)表于 2025-3-22 07:51:39 | 只看該作者
Supervised Batch Neural Gasto learn a (possibly fuzzy) supervised classification. Here we propose a batch version for supervised neural gas training which allows to efficiently learn a prototype-based classification, provided training data are given beforehand. The method relies on a simpler cost function than online supervis
5#
發(fā)表于 2025-3-22 08:45:42 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:16 | 只看該作者
7#
發(fā)表于 2025-3-22 17:31:59 | 只看該作者
A Study of the Robustness of KNN Classifiers Trained Using Soft Labelsing classes exist. In this work we attempt to compare between learning using soft and hard labels to train K-nearest neighbor classifiers. We propose a new technique to generate soft labels based on fuzzy-clustering of the data and fuzzy relabelling of cluster prototypes. Experiments were conducted
8#
發(fā)表于 2025-3-22 22:28:49 | 只看該作者
9#
發(fā)表于 2025-3-23 04:56:20 | 只看該作者
A Local Tangent Space Alignment Based Transductive Classification Algorithmnal coordinates of high-dimensional data, and can also reconstruct high dimensional coordinates from embedding coordinates. But it ignores the label information conveyed by data samples, and can not be used for classification directly. In this paper, a transductive manifold classification method, ca
10#
發(fā)表于 2025-3-23 08:14:10 | 只看該作者
Incremental Manifold Learning Via Tangent Space Alignment to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTS
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长宁区| 健康| 资溪县| 安仁县| 朝阳市| 遵义县| 丹凤县| 承德市| 资中县| 自贡市| 滨州市| 东光县| 新龙县| 广饶县| 北辰区| 泌阳县| 民和| 古交市| 衢州市| 陆河县| 潜山县| 莎车县| 涡阳县| 元谋县| 宜州市| 郯城县| 军事| 宿松县| 绍兴县| 长宁县| 博野县| 庆云县| 垦利县| 大洼县| 杂多县| 辉县市| 潮安县| 温宿县| 涿鹿县| 冕宁县| 新余市|