找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: ISSUE
51#
發(fā)表于 2025-3-30 09:02:23 | 只看該作者
,Transformer Based Prototype Learning for?Weakly-Supervised Histopathology Tissue Semantic Segmentatto obtain more complete localization maps. Additionally, we introduce a self-refinement mechanism to dampen the falsely activated regions in the initial localization map. Extensive experiments on two histopathology datasets demonstrate that our proposed model achieves the state-of-the-art performanc
52#
發(fā)表于 2025-3-30 15:34:36 | 只看該作者
53#
發(fā)表于 2025-3-30 19:06:39 | 只看該作者
,A Graph Convolutional Siamese Network for?the?Assessment and?Recognition of?Physical Rehabilitation model reaches state-of-the-art performance on action classification and outperforms the Dynamic Time Warping algorithm and hidden Markov model method by a large margin in terms of assessment accuracy.
54#
發(fā)表于 2025-3-30 23:18:52 | 只看該作者
55#
發(fā)表于 2025-3-31 04:39:18 | 只看該作者
Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay
56#
發(fā)表于 2025-3-31 07:06:38 | 只看該作者
https://doi.org/10.1007/978-3-7091-9977-0 of min-, max-, and average-pooling of the features, and 2) a self-attention mechanism. We evaluate the proposed method on multiple neural network architectures in a five-fold leave-patient-out cross-validation scheme and also against human experts on a withheld data set. We find that classification
57#
發(fā)表于 2025-3-31 10:30:46 | 只看該作者
58#
發(fā)表于 2025-3-31 14:56:39 | 只看該作者
Hartmut Bossel,Walter Heil,Alfred Puck87.20%, 83.12%, 0.85 and 0.85 respectively, which has achieved the best effect compared with other classification methods. Furthermore, visualization technique Grad-CAM++ is used to provide interpretability for the validity of our model.
59#
發(fā)表于 2025-3-31 17:31:25 | 只看該作者
Zufallsschwingungen linearer Systeme,e dilated convolutions. In order to improve the ability to learn the precise boundary of the objects, a gated boundary-aware branch is introduced and utilized to concentrate on the object border region. The effectiveness and robustness of the network are confirmed by evaluating this method on the AC
60#
發(fā)表于 2025-3-31 23:28:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旌德县| 宁远县| 屏东市| 维西| 静海县| 四平市| 孙吴县| 德阳市| 新龙县| 阳城县| 凤翔县| 雷波县| 镇赉县| 甘孜| 滕州市| 丰台区| 平顺县| 白河县| 宁远县| 天峨县| 凤台县| 凤翔县| 松桃| 高阳县| 阳山县| 潞城市| 漳浦县| 大关县| 金溪县| 潮州市| 靖安县| 藁城市| 油尖旺区| 宜丰县| 博爱县| 武乡县| 郁南县| 宁都县| 会东县| 桐柏县| 淳安县|