找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: ISSUE
61#
發(fā)表于 2025-4-1 03:39:55 | 只看該作者
Siegfried Schwaigerer,Gerd Mühlenbecks that are not contained in the predefined vocabulary. Furthermore, we propose a local correlation detecting (LCD) task and fine-tune the augmented Transformers in a multi-task fashion. Extensive experiments on two public datasets show that the augmented Transformers significantly outperform their b
62#
發(fā)表于 2025-4-1 09:06:57 | 只看該作者
https://doi.org/10.1007/978-3-642-59090-0he process of feature fusion between encoder and decoder, which is used to smooth the semantic gap between encoder and decoder caused by skip-connection. We evaluated the proposed model on the ISIC 2017 and ISIC 2018 datasets. The experimental results show that the model achieves a good balance betw
63#
發(fā)表于 2025-4-1 12:28:55 | 只看該作者
https://doi.org/10.1007/978-3-662-07208-0mportant features of each lung field..Compared to state-of-the-art baseline models (DenseNet, Mask R-CNN), symmetry-aware training can improve the AUROC score by up to 10%. Furthermore, the findings indicate that, by integrating the bilateral symmetry of the lung field, the interpretability of the m
64#
發(fā)表于 2025-4-1 17:22:50 | 只看該作者
,Die elastizit?tstheoretischen Grundlagen,d to conduct two different works in parallel. One is to directly predict the individual tooth segmentation while the other is to generate an offset map for the refinement. Besides, in order to improve the accuracy of tooth boundary segmentation, a boundary-aware loss is also applied in our method. C
65#
發(fā)表于 2025-4-1 20:22:36 | 只看該作者
,Die elastizit?tstheoretischen Grundlagen,to obtain more complete localization maps. Additionally, we introduce a self-refinement mechanism to dampen the falsely activated regions in the initial localization map. Extensive experiments on two histopathology datasets demonstrate that our proposed model achieves the state-of-the-art performanc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常山县| 怀来县| 佳木斯市| 盐亭县| 德化县| 北流市| 滨海县| 宁海县| 福海县| 邵东县| 峡江县| 石景山区| 清丰县| 泰州市| 绥德县| 宝山区| 吴忠市| 依安县| 台北市| 衡阳县| 尉犁县| 沭阳县| 惠来县| 蛟河市| 吴川市| 临潭县| 香河县| 古蔺县| 灵武市| 通化市| 泰兴市| 偃师市| 共和县| 桦甸市| 修水县| 济源市| 桐庐县| 平定县| 同德县| 乐业县| 醴陵市|