找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: ISSUE
61#
發(fā)表于 2025-4-1 03:39:55 | 只看該作者
Siegfried Schwaigerer,Gerd Mühlenbecks that are not contained in the predefined vocabulary. Furthermore, we propose a local correlation detecting (LCD) task and fine-tune the augmented Transformers in a multi-task fashion. Extensive experiments on two public datasets show that the augmented Transformers significantly outperform their b
62#
發(fā)表于 2025-4-1 09:06:57 | 只看該作者
https://doi.org/10.1007/978-3-642-59090-0he process of feature fusion between encoder and decoder, which is used to smooth the semantic gap between encoder and decoder caused by skip-connection. We evaluated the proposed model on the ISIC 2017 and ISIC 2018 datasets. The experimental results show that the model achieves a good balance betw
63#
發(fā)表于 2025-4-1 12:28:55 | 只看該作者
https://doi.org/10.1007/978-3-662-07208-0mportant features of each lung field..Compared to state-of-the-art baseline models (DenseNet, Mask R-CNN), symmetry-aware training can improve the AUROC score by up to 10%. Furthermore, the findings indicate that, by integrating the bilateral symmetry of the lung field, the interpretability of the m
64#
發(fā)表于 2025-4-1 17:22:50 | 只看該作者
,Die elastizit?tstheoretischen Grundlagen,d to conduct two different works in parallel. One is to directly predict the individual tooth segmentation while the other is to generate an offset map for the refinement. Besides, in order to improve the accuracy of tooth boundary segmentation, a boundary-aware loss is also applied in our method. C
65#
發(fā)表于 2025-4-1 20:22:36 | 只看該作者
,Die elastizit?tstheoretischen Grundlagen,to obtain more complete localization maps. Additionally, we introduce a self-refinement mechanism to dampen the falsely activated regions in the initial localization map. Extensive experiments on two histopathology datasets demonstrate that our proposed model achieves the state-of-the-art performanc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
腾冲县| 庆云县| 金塔县| 桓台县| 建瓯市| 岫岩| 山阳县| 涪陵区| 依兰县| 故城县| 长海县| 收藏| 平舆县| 黔江区| 江都市| 廉江市| 天门市| 绥芬河市| 五华县| 广南县| 泰州市| 中方县| 长泰县| 宜黄县| 论坛| 安图县| 望谟县| 绥中县| 天峨县| 定安县| 石嘴山市| 富源县| 读书| 乳源| 阳高县| 阿拉善右旗| 嘉禾县| 石泉县| 扎赉特旗| 阿瓦提县| 襄垣县|