找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2020; 29th International C Igor Farka?,Paolo Masulli,Stefan Wermter Conference proc

[復(fù)制鏈接]
樓主: 預(yù)兆前
21#
發(fā)表于 2025-3-25 06:44:22 | 只看該作者
22#
發(fā)表于 2025-3-25 10:32:04 | 只看該作者
Obstacles to Depth Compression of?Neural Networks any algorithm achieving depth compression of neural networks. In particular, we show that depth compression is as hard as learning the input distribution, ruling out guarantees for most existing approaches. Furthermore, even when the input distribution is of a known, simple form, we show that there are no . algorithms for depth compression.
23#
發(fā)表于 2025-3-25 15:32:09 | 只看該作者
Prediction Stability as a Criterion in Active Learningect of the former uncertainty-based methods. Experiments are made on CIFAR-10 and CIFAR-100, and the results indicates that prediction stability was effective and works well on fewer-labeled datasets. Prediction stability reaches the accuracy of traditional acquisition functions like entropy on CIFAR-10, and notably outperformed them on CIFAR-100.
24#
發(fā)表于 2025-3-25 18:26:38 | 只看該作者
25#
發(fā)表于 2025-3-25 20:57:06 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/162650.jpg
26#
發(fā)表于 2025-3-26 01:23:41 | 只看該作者
https://doi.org/10.1007/978-3-030-61616-8artificial intelligence; classification; computational linguistics; computer networks; computer vision; i
27#
發(fā)表于 2025-3-26 07:21:30 | 只看該作者
28#
發(fā)表于 2025-3-26 11:01:47 | 只看該作者
Log-Nets: Logarithmic Feature-Product Layers Yield More Compact Networksions. Log-Nets are capable of surpassing the performance of traditional convolutional neural networks (CNNs) while using fewer parameters. Performance is evaluated on the Cifar-10 and ImageNet benchmarks.
29#
發(fā)表于 2025-3-26 12:52:15 | 只看該作者
Artificial Neural Networks and Machine Learning – ICANN 2020978-3-030-61616-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
30#
發(fā)表于 2025-3-26 17:47:01 | 只看該作者
,Einführung von Fertigungsinseln,ions. Log-Nets are capable of surpassing the performance of traditional convolutional neural networks (CNNs) while using fewer parameters. Performance is evaluated on the Cifar-10 and ImageNet benchmarks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民乐县| 永康市| 玉屏| 株洲市| 三门县| 土默特右旗| 平定县| 长子县| 奉新县| 资中县| 文成县| 凉城县| 武穴市| 福海县| 南城县| 崇文区| 黎平县| 科技| 宁陵县| 天门市| 景德镇市| 望江县| 栾川县| 云南省| 杭锦旗| 遂昌县| 磐石市| 茌平县| 龙陵县| 景泰县| 龙江县| 夏邑县| 呼伦贝尔市| 资源县| 兰州市| 新龙县| 克山县| 绥德县| 白银市| 镇平县| 乌兰察布市|