找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2020; 29th International C Igor Farka?,Paolo Masulli,Stefan Wermter Conference proc

[復制鏈接]
樓主: 預兆前
11#
發(fā)表于 2025-3-23 11:27:10 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:56 | 只看該作者
Neural Network Compression via?Learnable Wavelet Transformsers of RNNs. Our wavelet compressed RNNs have significantly fewer parameters yet still perform competitively with the state-of-the-art on synthetic and real-world RNN benchmarks (Source code is available at .). Wavelet optimization adds basis flexibility, without large numbers of extra weights.
13#
發(fā)表于 2025-3-23 20:50:10 | 只看該作者
0302-9743 sis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action...*The conference was postponed to 2021 due to the COVID-19 pandemic..978-3-030-61615-1978-3-030-61616-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
14#
發(fā)表于 2025-3-23 23:03:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:17 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:25 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:28 | 只看該作者
,Zusammenfassung und Schluβfolgerungen, any algorithm achieving depth compression of neural networks. In particular, we show that depth compression is as hard as learning the input distribution, ruling out guarantees for most existing approaches. Furthermore, even when the input distribution is of a known, simple form, we show that there are no . algorithms for depth compression.
18#
發(fā)表于 2025-3-24 15:42:24 | 只看該作者
Glossar, Begriffe und Definitionen,ect of the former uncertainty-based methods. Experiments are made on CIFAR-10 and CIFAR-100, and the results indicates that prediction stability was effective and works well on fewer-labeled datasets. Prediction stability reaches the accuracy of traditional acquisition functions like entropy on CIFAR-10, and notably outperformed them on CIFAR-100.
19#
發(fā)表于 2025-3-24 21:42:56 | 只看該作者
20#
發(fā)表于 2025-3-25 00:05:02 | 只看該作者
Pruning Artificial Neural Networks: A Way to Find Well-Generalizing, High-Entropy Sharp Minimaroaches. In this work we also propose PSP-entropy, a measure to understand how a given neuron correlates to some specific learned classes. Interestingly, we observe that the features extracted by iteratively-pruned models are less correlated to specific classes, potentially making these models a better fit in transfer learning approaches.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 10:12
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乌海市| 宁津县| 宣恩县| 义乌市| 梁平县| 奇台县| 富锦市| 平昌县| 临高县| 松滋市| 新晃| 巫溪县| 武功县| 桐城市| 黑水县| 昌图县| 麻城市| 桂林市| 大名县| 牡丹江市| 沅江市| 英吉沙县| 大城县| 无锡市| 镇远县| 历史| 普陀区| 竹北市| 安平县| 宜州市| 社旗县| 和龙市| 招远市| 高淳县| 成都市| 罗山县| 罗城| 西和县| 贺州市| 怀柔区| 伊宁市|