找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe

[復(fù)制鏈接]
查看: 11106|回復(fù): 59
樓主
發(fā)表于 2025-3-21 20:00:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Neural Networks and Machine Learning – ICANN 2018
期刊簡稱27th International C
影響因子2023Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni
視頻videohttp://file.papertrans.cn/163/162641/162641.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe
影響因子.This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27.th. International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018...The 139 full and 28 short papers as well as 41 full poster papers and 41 short poster papers presented in these volumes was carefully reviewed and selected from? total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018影響因子(影響力)




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018被引頻次




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018被引頻次學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018年度引用




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018年度引用學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018讀者反饋




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:45 | 只看該作者
https://doi.org/10.1007/978-3-322-97075-6rage correct recognition rate of LDP on Pollenmonitor dataset is 90.95%, which is much higher than that of other compared pollen recognition methods. The experimental results show that our method is more suitable for the practical classification and identification of pollen images than compared methods.
板凳
發(fā)表于 2025-3-22 00:24:47 | 只看該作者
Rezeption von Fernsehnachrichten im Wandelof patterns what was unachievable for convolutional layers. The new network concept has been confirmed by verification of its ability to perform typical image affine transformations such as translation, scaling and rotation.
地板
發(fā)表于 2025-3-22 07:07:29 | 只看該作者
5#
發(fā)表于 2025-3-22 08:45:02 | 只看該作者
A Novel Echo State Network Model Using Bayesian Ridge Regression and Independent Component Analysiselve combinations of four other regression models and three different choices of dimensionality reduction techniques, and measure its running time. Experimental results show that our model significantly outperforms other state-of-the-art ESN prediction models while maintaining a satisfactory running time.
6#
發(fā)表于 2025-3-22 14:29:21 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:09 | 只看該作者
New Architecture of Correlated Weights Neural Network for Global Image Transformationsof patterns what was unachievable for convolutional layers. The new network concept has been confirmed by verification of its ability to perform typical image affine transformations such as translation, scaling and rotation.
8#
發(fā)表于 2025-3-22 23:56:36 | 只看該作者
9#
發(fā)表于 2025-3-23 02:50:08 | 只看該作者
10#
發(fā)表于 2025-3-23 09:19:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼勒克县| 钟山县| 如东县| 达日县| 手机| 大悟县| 永德县| 双流县| 乐业县| 德保县| 江川县| 平顺县| 岳阳县| 和林格尔县| 炉霍县| 礼泉县| 凤冈县| 峨眉山市| 靖远县| 青铜峡市| 山丹县| 民县| 分宜县| 鄄城县| 卢龙县| 大姚县| 海南省| 泉州市| 左云县| 岳池县| 贡山| 大埔县| 建平县| 泾川县| 应用必备| 团风县| 浦县| 边坝县| 甘孜| 扬州市| 安远县|