找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe

[復制鏈接]
查看: 11113|回復: 59
樓主
發(fā)表于 2025-3-21 20:00:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Neural Networks and Machine Learning – ICANN 2018
期刊簡稱27th International C
影響因子2023Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni
視頻videohttp://file.papertrans.cn/163/162641/162641.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe
影響因子.This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27.th. International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018...The 139 full and 28 short papers as well as 41 full poster papers and 41 short poster papers presented in these volumes was carefully reviewed and selected from? total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018影響因子(影響力)




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018影響因子(影響力)學科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018網絡公開度




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018網絡公開度學科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018被引頻次




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018被引頻次學科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018年度引用




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018年度引用學科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018讀者反饋




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:34:45 | 只看該作者
https://doi.org/10.1007/978-3-322-97075-6rage correct recognition rate of LDP on Pollenmonitor dataset is 90.95%, which is much higher than that of other compared pollen recognition methods. The experimental results show that our method is more suitable for the practical classification and identification of pollen images than compared methods.
板凳
發(fā)表于 2025-3-22 00:24:47 | 只看該作者
Rezeption von Fernsehnachrichten im Wandelof patterns what was unachievable for convolutional layers. The new network concept has been confirmed by verification of its ability to perform typical image affine transformations such as translation, scaling and rotation.
地板
發(fā)表于 2025-3-22 07:07:29 | 只看該作者
5#
發(fā)表于 2025-3-22 08:45:02 | 只看該作者
A Novel Echo State Network Model Using Bayesian Ridge Regression and Independent Component Analysiselve combinations of four other regression models and three different choices of dimensionality reduction techniques, and measure its running time. Experimental results show that our model significantly outperforms other state-of-the-art ESN prediction models while maintaining a satisfactory running time.
6#
發(fā)表于 2025-3-22 14:29:21 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:09 | 只看該作者
New Architecture of Correlated Weights Neural Network for Global Image Transformationsof patterns what was unachievable for convolutional layers. The new network concept has been confirmed by verification of its ability to perform typical image affine transformations such as translation, scaling and rotation.
8#
發(fā)表于 2025-3-22 23:56:36 | 只看該作者
9#
發(fā)表于 2025-3-23 02:50:08 | 只看該作者
10#
發(fā)表于 2025-3-23 09:19:52 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 07:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
曲松县| 包头市| 乌拉特后旗| 松滋市| 霍林郭勒市| 婺源县| 冷水江市| 革吉县| 晋中市| 湘乡市| 伊吾县| 溧水县| 图们市| 固镇县| 山东省| 鄂州市| 宁德市| 牡丹江市| 土默特左旗| 浮山县| 毕节市| 马关县| 濉溪县| 湟中县| 綦江县| 上高县| 平乡县| 龙州县| 靖州| 宝丰县| 青龙| 如皋市| 白朗县| 海原县| 马公市| 祁连县| 曲水县| 墨江| 南木林县| 昭苏县| 大理市|