找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Nets and Genetic Algorithms; Proceedings of the I David W. Pearson,Nigel C. Steele,Rudolf F. Albrech Conference proceedin

[復(fù)制鏈接]
樓主: sustained
31#
發(fā)表于 2025-3-27 00:58:52 | 只看該作者
32#
發(fā)表于 2025-3-27 04:21:02 | 只看該作者
https://doi.org/10.1007/978-1-4020-6835-5y are continuous systems. A frequently used problem domain to check this are the well-known trajectory tracking problems. Some new problems of this problem domain are defined in this paper. The experiments are carried out with the generalized recurrent neural networks and solutions are found for each trajectory of the problem domain.
33#
發(fā)表于 2025-3-27 06:36:13 | 只看該作者
https://doi.org/10.1057/9781137454928s implemented with a multiplexer 2/1 whose output is differentiable with respect to all of its inputs, thus enabling the derivatives to be propagated through the network. The relevance of input vectors is learned together with the weights of the network using a gradient-based algorithm.
34#
發(fā)表于 2025-3-27 10:28:31 | 只看該作者
Normativity, Feminism, and PoliticsSVM, with special proprieties and high discrimination ability. We have applied this kernel in the pattern recognition, and we have compare the different performances of many other kernels, results show that the new kernel is very performant.
35#
發(fā)表于 2025-3-27 14:19:08 | 只看該作者
36#
發(fā)表于 2025-3-27 18:51:07 | 只看該作者
Generalized recurrent neural networks and continuous dynamic systems,y are continuous systems. A frequently used problem domain to check this are the well-known trajectory tracking problems. Some new problems of this problem domain are defined in this paper. The experiments are carried out with the generalized recurrent neural networks and solutions are found for each trajectory of the problem domain.
37#
發(fā)表于 2025-3-28 00:55:17 | 只看該作者
38#
發(fā)表于 2025-3-28 04:05:24 | 只看該作者
,β_SVM a new Support Vector Machine kernel,SVM, with special proprieties and high discrimination ability. We have applied this kernel in the pattern recognition, and we have compare the different performances of many other kernels, results show that the new kernel is very performant.
39#
發(fā)表于 2025-3-28 09:21:38 | 只看該作者
Optimal neighbourhood and model quality indicators,dly be verified when a little number of samples is given, which is the most frequent case in practice. We follow a local approach on the basis of an optimal neighbourhood choice. We use this neighbourhood to predict as well as to give some simple model quality indicators for any sample.
40#
發(fā)表于 2025-3-28 13:49:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达日县| 德化县| 龙江县| 海兴县| 雷波县| 岳普湖县| 图们市| 台湾省| 日喀则市| 治多县| 莱州市| 松阳县| 高要市| 上栗县| 衡水市| 青铜峡市| 浦北县| 朝阳市| 莫力| 都昌县| 名山县| 桃江县| 金平| 郴州市| 革吉县| 舟山市| 承德市| 荥经县| 图片| 清苑县| 登封市| 平武县| 黄浦区| 咸丰县| 凤翔县| 武乡县| 沙湾县| 北川| 绵竹市| 郁南县| 田林县|