找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Nets and Genetic Algorithms; Proceedings of the I David W. Pearson,Nigel C. Steele,Rudolf F. Albrech Conference proceedin

[復(fù)制鏈接]
查看: 30994|回復(fù): 67
樓主
發(fā)表于 2025-3-21 18:36:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Nets and Genetic Algorithms
期刊簡(jiǎn)稱Proceedings of the I
影響因子2023David W. Pearson,Nigel C. Steele,Rudolf F. Albrech
視頻videohttp://file.papertrans.cn/163/162617/162617.mp4
發(fā)行地址Latest developments in neural nets and genetic algorithms
圖書封面Titlebook: Artificial Neural Nets and Genetic Algorithms; Proceedings of the I David W. Pearson,Nigel C. Steele,Rudolf F. Albrech Conference proceedin
影響因子The 2003 edition of ICANNGA marks a milestone in this conference series, because it is the tenth year of its existence. The series began in 1993 with the inaugural conference at Innsbruck in Austria. At that first conference, the organisers decided to organise a similar scientific meeting every two years. As a result, conferences were organised at Ales in France (1995), Norwich in England (1997), Portoroz in Slovenia (1999) and Prague in the Czech Republic (2001). It is a great honour that the conference is taking place in France for the second time. Each edition of ICANNGA has been special and had its own character. Not only that, participants have been able to sample the life and local culture in five different European coun- tries. Originally limited to neural networks and genetic algorithms the conference has broadened its outlook over the past ten years and now includes papers on soft computing and artificial intelligence in general. This is one of the reasons why the reader will find papers on fuzzy logic and various other topics not directly related to neural networks or genetic algorithms included in these proceedings. We have, however, kept the same name, "International Co
Pindex Conference proceedings 2003
The information of publication is updating

書目名稱Artificial Neural Nets and Genetic Algorithms影響因子(影響力)




書目名稱Artificial Neural Nets and Genetic Algorithms影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Nets and Genetic Algorithms網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Nets and Genetic Algorithms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Nets and Genetic Algorithms被引頻次




書目名稱Artificial Neural Nets and Genetic Algorithms被引頻次學(xué)科排名




書目名稱Artificial Neural Nets and Genetic Algorithms年度引用




書目名稱Artificial Neural Nets and Genetic Algorithms年度引用學(xué)科排名




書目名稱Artificial Neural Nets and Genetic Algorithms讀者反饋




書目名稱Artificial Neural Nets and Genetic Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:38:29 | 只看該作者
A learning probabilistic neural network with fuzzy inference,roposed. The advantages of this network lie in the possibility of classification of the data with substantially overlapping clusters, and tuning of the activation function parameters improves the accuracy of classification. Simulation results confirm the efficiency of the proposed approach in the da
地板
發(fā)表于 2025-3-22 08:10:43 | 只看該作者
5#
發(fā)表于 2025-3-22 12:10:06 | 只看該作者
6#
發(fā)表于 2025-3-22 14:59:12 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:19 | 只看該作者
A hybrid algorithm for weight and connectivity optimization in feedforward neural networks,or performance because of lack of expressional capacity, while a too large network fits noise or apparent relations in the data sets studied. The work required to find a parsimonious network is often considerable with respect to both time and computational effort. This paper presents a method for tr
8#
發(fā)表于 2025-3-23 00:11:29 | 只看該作者
9#
發(fā)表于 2025-3-23 04:30:13 | 只看該作者
Binary Factorization in Hopfield-Like Neural Autoassociator: A Promising Tool for Data Compression,n feature extraction procedure which maps original patterns into features (factors) space of reduced, possibily very small, dimension. In this paper, we outline that Hebbian unsupervised learning of Hopfield-like neural network is a natural procedure for factor extraction. Due to this learning, fact
10#
發(fā)表于 2025-3-23 07:54:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 20:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
班戈县| 游戏| 北海市| 秦皇岛市| 达州市| 原平市| 忻城县| 五寨县| 塔城市| 云和县| 潞西市| 陇川县| 鹤峰县| 广元市| 湘乡市| 崇礼县| 酒泉市| 平南县| 洪泽县| 彰化县| 绵阳市| 新乐市| 于田县| 阿拉尔市| 增城市| 额尔古纳市| 宝应县| 调兵山市| 东兴市| 城步| 大冶市| 喀喇沁旗| 奇台县| 永丰县| 文化| 蕲春县| 吉林市| 周至县| 漳州市| 加查县| 河津市|