找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Medicine; 21st International C Jose M. Juarez,Mar Marcos,Allan Tucker Conference proceedings 2023 The Editor(s)

[復(fù)制鏈接]
樓主: ergonomics
11#
發(fā)表于 2025-3-23 10:21:55 | 只看該作者
0302-9743 in Portoroz, Slovenia, in June12–15, 2023..The 23 full papers and 21 short papers presented together with 3?demonstration papers?were selected from 108 submissions.?The papers are grouped in topical sections on: machine learning and deep learning; explainability and transfer learning; natural langu
12#
發(fā)表于 2025-3-23 17:27:27 | 只看該作者
Proshanto K. Mukherjee,Mark Brownrigges of events. We performed empirical experiments on a cohort of 48. emergency care patients from a large Danish hospital. Experimental results show that M-BERT can achieve high accuracy on a variety of LOS problems and outperforms traditional non-sequence-based machine learning approaches.
13#
發(fā)表于 2025-3-23 21:32:12 | 只看該作者
Patient Event Sequences for?Predicting Hospitalization Length of?Stayes of events. We performed empirical experiments on a cohort of 48. emergency care patients from a large Danish hospital. Experimental results show that M-BERT can achieve high accuracy on a variety of LOS problems and outperforms traditional non-sequence-based machine learning approaches.
14#
發(fā)表于 2025-3-24 00:59:30 | 只看該作者
Hospital Length of?Stay Prediction Based on?Multi-modal Data Towards Trustworthy Human-AI Collaboratmaking process. Explaining models built on both: human-annotated and algorithm-extracted radiomics features provides valuable insights for physicians working in a hospital. We believe the presented approach to be general and widely applicable to other time-to-event medical use cases. For reproducibility, we open-source code and the . dataset at ..
15#
發(fā)表于 2025-3-24 05:04:20 | 只看該作者
16#
發(fā)表于 2025-3-24 09:53:18 | 只看該作者
Conference proceedings 2023ions.?The papers are grouped in topical sections on: machine learning and deep learning; explainability and transfer learning; natural language processing; image analysis and signal analysis; data analysis and statistical models; knowledge representation and decision support..
17#
發(fā)表于 2025-3-24 13:05:06 | 只看該作者
The FasL-Fas System in Disease and Therapy,making process. Explaining models built on both: human-annotated and algorithm-extracted radiomics features provides valuable insights for physicians working in a hospital. We believe the presented approach to be general and widely applicable to other time-to-event medical use cases. For reproducibility, we open-source code and the . dataset at ..
18#
發(fā)表于 2025-3-24 18:54:16 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:31 | 只看該作者
Survival Hierarchical Agglomerative Clustering: A Semi-Supervised Clustering Method Incorporating Sulized therapeutic approaches. To address this issue, clustering algorithms are often employed that identify patient groups with homogeneous characteristics. Clustering algorithms are mainly unsupervised, resulting in clusters that are biologically meaningful, but not necessarily correlated with a cl
20#
發(fā)表于 2025-3-25 00:03:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高陵县| 新乡县| 嫩江县| 保定市| 芮城县| 团风县| 武宁县| 那曲县| 昌黎县| 莫力| 雷波县| 邮箱| 惠来县| 灵寿县| 育儿| 陕西省| 枣强县| 会理县| 靖江市| 论坛| 确山县| 高陵县| 诸城市| 门源| 武宁县| 寿光市| 淮滨县| 江孜县| 宁海县| 宜川县| 西乌| 霞浦县| 南华县| 台南市| 大悟县| 蓝田县| 永仁县| 崇信县| 凉城县| 隆昌县| 秦皇岛市|