找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Medicine; 21st International C Jose M. Juarez,Mar Marcos,Allan Tucker Conference proceedings 2023 The Editor(s)

[復(fù)制鏈接]
樓主: ergonomics
11#
發(fā)表于 2025-3-23 10:21:55 | 只看該作者
0302-9743 in Portoroz, Slovenia, in June12–15, 2023..The 23 full papers and 21 short papers presented together with 3?demonstration papers?were selected from 108 submissions.?The papers are grouped in topical sections on: machine learning and deep learning; explainability and transfer learning; natural langu
12#
發(fā)表于 2025-3-23 17:27:27 | 只看該作者
Proshanto K. Mukherjee,Mark Brownrigges of events. We performed empirical experiments on a cohort of 48. emergency care patients from a large Danish hospital. Experimental results show that M-BERT can achieve high accuracy on a variety of LOS problems and outperforms traditional non-sequence-based machine learning approaches.
13#
發(fā)表于 2025-3-23 21:32:12 | 只看該作者
Patient Event Sequences for?Predicting Hospitalization Length of?Stayes of events. We performed empirical experiments on a cohort of 48. emergency care patients from a large Danish hospital. Experimental results show that M-BERT can achieve high accuracy on a variety of LOS problems and outperforms traditional non-sequence-based machine learning approaches.
14#
發(fā)表于 2025-3-24 00:59:30 | 只看該作者
Hospital Length of?Stay Prediction Based on?Multi-modal Data Towards Trustworthy Human-AI Collaboratmaking process. Explaining models built on both: human-annotated and algorithm-extracted radiomics features provides valuable insights for physicians working in a hospital. We believe the presented approach to be general and widely applicable to other time-to-event medical use cases. For reproducibility, we open-source code and the . dataset at ..
15#
發(fā)表于 2025-3-24 05:04:20 | 只看該作者
16#
發(fā)表于 2025-3-24 09:53:18 | 只看該作者
Conference proceedings 2023ions.?The papers are grouped in topical sections on: machine learning and deep learning; explainability and transfer learning; natural language processing; image analysis and signal analysis; data analysis and statistical models; knowledge representation and decision support..
17#
發(fā)表于 2025-3-24 13:05:06 | 只看該作者
The FasL-Fas System in Disease and Therapy,making process. Explaining models built on both: human-annotated and algorithm-extracted radiomics features provides valuable insights for physicians working in a hospital. We believe the presented approach to be general and widely applicable to other time-to-event medical use cases. For reproducibility, we open-source code and the . dataset at ..
18#
發(fā)表于 2025-3-24 18:54:16 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:31 | 只看該作者
Survival Hierarchical Agglomerative Clustering: A Semi-Supervised Clustering Method Incorporating Sulized therapeutic approaches. To address this issue, clustering algorithms are often employed that identify patient groups with homogeneous characteristics. Clustering algorithms are mainly unsupervised, resulting in clusters that are biologically meaningful, but not necessarily correlated with a cl
20#
發(fā)表于 2025-3-25 00:03:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
称多县| 蕉岭县| 珠海市| 易门县| 崇左市| 周宁县| 颍上县| 信阳市| 浦北县| 武鸣县| 叙永县| 宜阳县| 惠东县| 定远县| 沽源县| 洪泽县| 突泉县| 平泉县| 兰考县| 同仁县| 绥宁县| 四平市| 祥云县| 林口县| 庆城县| 婺源县| 迁安市| 边坝县| 乌兰浩特市| 阿坝县| 泰兴市| 安顺市| 平和县| 托里县| 林西县| 扬中市| 土默特右旗| 湖北省| 林州市| 齐齐哈尔市| 上犹县|