找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Medicine; 21st International C Jose M. Juarez,Mar Marcos,Allan Tucker Conference proceedings 2023 The Editor(s)

[復(fù)制鏈接]
查看: 18056|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:04:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence in Medicine
期刊簡(jiǎn)稱21st International C
影響因子2023Jose M. Juarez,Mar Marcos,Allan Tucker
視頻videohttp://file.papertrans.cn/163/162485/162485.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Intelligence in Medicine; 21st International C Jose M. Juarez,Mar Marcos,Allan Tucker Conference proceedings 2023 The Editor(s)
影響因子.This book constitutes the refereed proceedings of the 21st International Conference on Artificial Intelligence in Medicine, AIME 2023, held in Portoroz, Slovenia, in June12–15, 2023..The 23 full papers and 21 short papers presented together with 3?demonstration papers?were selected from 108 submissions.?The papers are grouped in topical sections on: machine learning and deep learning; explainability and transfer learning; natural language processing; image analysis and signal analysis; data analysis and statistical models; knowledge representation and decision support..
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Artificial Intelligence in Medicine影響因子(影響力)




書目名稱Artificial Intelligence in Medicine影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence in Medicine網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence in Medicine網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence in Medicine被引頻次




書目名稱Artificial Intelligence in Medicine被引頻次學(xué)科排名




書目名稱Artificial Intelligence in Medicine年度引用




書目名稱Artificial Intelligence in Medicine年度引用學(xué)科排名




書目名稱Artificial Intelligence in Medicine讀者反饋




書目名稱Artificial Intelligence in Medicine讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:46:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:07:51 | 只看該作者
Gary R. Hudes MD,Jessie Schol RNsicians, showing that our approach finds clinically-relevant solutions. Finally, we discuss the goodness of fit of our graph and its consistency from a clinical decision-making perspective using graphical separation to validate causal pathways.
地板
發(fā)表于 2025-3-22 06:33:15 | 只看該作者
Geistesgeschichtliche Faschismusdiagnosen,nd new smaller models were trained, achieving a performance as good as the initial ones. Despite the susceptibility of all models to adversarial attacks, adversarial training enabled them to preserve significantly higher results, so it can be a valuable approach to provide a more robust driver drowsiness detection.
5#
發(fā)表于 2025-3-22 12:24:36 | 只看該作者
6#
發(fā)表于 2025-3-22 13:13:28 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:00 | 只看該作者
Causal Discovery with?Missing Data in?a?Multicentric Clinical Studysicians, showing that our approach finds clinically-relevant solutions. Finally, we discuss the goodness of fit of our graph and its consistency from a clinical decision-making perspective using graphical separation to validate causal pathways.
8#
發(fā)表于 2025-3-22 21:38:53 | 只看該作者
Adversarial Robustness and Feature Impact Analysis for Driver Drowsiness Detectionnd new smaller models were trained, achieving a performance as good as the initial ones. Despite the susceptibility of all models to adversarial attacks, adversarial training enabled them to preserve significantly higher results, so it can be a valuable approach to provide a more robust driver drowsiness detection.
9#
發(fā)表于 2025-3-23 03:49:39 | 只看該作者
Computational Evaluation of?Model-Agnostic Explainable AI Using Local Feature Importance in?Healthcaocal feature importances) as features and the output of the prediction problem (labels) again as labels. We evaluate the method based a real-world tabular electronic health records dataset. At the end, we answer the research question: “How can we computationally evaluate XAI Models for a specific prediction model and dataset?”.
10#
發(fā)表于 2025-3-23 07:20:40 | 只看該作者
Batch Integrated Gradients: Explanations for?Temporal Electronic Health RecordsRecords (EHRs), we see patient records can be stored in temporal sequences. Thus, we demonstrate Batch-Integrated Gradients in producing explanations over a temporal sequence that satisfy proposed properties corresponding to XAI for EHR data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘肃省| 紫云| 屯门区| 来宾市| 南川市| 新乡市| 阜新| 崇仁县| 延津县| 盐津县| 博野县| 阳春市| 禄丰县| 龙井市| 涟源市| 洪湖市| 木里| 阿图什市| 浑源县| 扬州市| 杭锦旗| 孙吴县| 朝阳市| 呼图壁县| 长沙市| 阿荣旗| 江华| 绿春县| 平泉县| 台湾省| 繁昌县| 准格尔旗| 沙雅县| 汤阴县| 临桂县| 宁南县| 三江| 承德市| 博野县| 四平市| 吕梁市|