找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Robotics; 8th International Sy Huimin Lu,Jintong Cai Conference proceedings 2024 The Editor(s) (if applicable)

[復制鏈接]
樓主: GALL
21#
發(fā)表于 2025-3-25 06:49:05 | 只看該作者
22#
發(fā)表于 2025-3-25 10:58:54 | 只看該作者
Weitere M?glichkeiten — Ausblickd Network (OSAPN). The experimental results show that our method can predict the comments, which are more closely aligned to aesthetic topics than those produced by the previous models. Through the evaluation criteria of image captioning, the specially designed model outperforms other methods.
23#
發(fā)表于 2025-3-25 12:18:26 | 只看該作者
24#
發(fā)表于 2025-3-25 17:39:31 | 只看該作者
25#
發(fā)表于 2025-3-25 22:46:57 | 只看該作者
26#
發(fā)表于 2025-3-26 02:52:33 | 只看該作者
,Two Stream Multi-Attention Graph Convolutional Network for?Skeleton-Based Action Recognition,ich are proposed to enhance the spatio-temporal expression ability of the model. On cross-subject benchmark and cross-view benchmark of NTU-RGB+D datasets, the proposed model achieves 88.60% and 97.16% accuracy respectively, and 35.62% accuracy on the Kinetics dataset. On both datasets, our method outperforms state-of-the-art methods.
27#
發(fā)表于 2025-3-26 08:16:43 | 只看該作者
,Aesthetic Multi-attributes Captioning Network for?Photos,d Network (OSAPN). The experimental results show that our method can predict the comments, which are more closely aligned to aesthetic topics than those produced by the previous models. Through the evaluation criteria of image captioning, the specially designed model outperforms other methods.
28#
發(fā)表于 2025-3-26 11:08:44 | 只看該作者
Improving Road Extraction in Hyperspectral Data with Deep Learning Models,osed method improves the average per-class accuracy by more than 18% over the traditional methods, demonstrating its potential to optimize road extraction from hyperspectral data. Further research can focus on improving the accuracy and efficiency of road network extraction from hyperspectral data.
29#
發(fā)表于 2025-3-26 15:18:35 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大丰市| 普格县| 襄汾县| 西丰县| 山阳县| 岑巩县| 集安市| 涪陵区| 长兴县| 威海市| 罗田县| 自治县| 青铜峡市| 剑河县| 广水市| 繁昌县| 遂昌县| 淮南市| 辽中县| 邯郸县| 望都县| 阳西县| 三门峡市| 永顺县| 张家界市| 栾城县| 阿拉尔市| 五华县| 屏东市| 嘉鱼县| 砚山县| 射阳县| 资源县| 会泽县| 高密市| 犍为县| 明星| 杭州市| 新野县| 昌平区| 张家界市|