找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Robotics; 8th International Sy Huimin Lu,Jintong Cai Conference proceedings 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 7983|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:38:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Artificial Intelligence and Robotics
期刊簡(jiǎn)稱(chēng)8th International Sy
影響因子2023Huimin Lu,Jintong Cai
視頻videohttp://file.papertrans.cn/163/162270/162270.mp4
學(xué)科分類(lèi)Communications in Computer and Information Science
圖書(shū)封面Titlebook: Artificial Intelligence and Robotics; 8th International Sy Huimin Lu,Jintong Cai Conference proceedings 2024 The Editor(s) (if applicable)
影響因子This book constitutes the refereed proceedings of the 8th International Symposium on Artificial Intelligence and Robotics, ISAIR?2023, held in Beijing, China, during October 21–23, 2023.?The 50 full papers? included in this book were carefully reviewed and selected from 103 submissions. They focus on three important areas of Pattern Recognition: Artificial Intelligence; Robotics and Internet of Things, Covering Various Technical Aspects..
Pindex Conference proceedings 2024
The information of publication is updating

書(shū)目名稱(chēng)Artificial Intelligence and Robotics影響因子(影響力)




書(shū)目名稱(chēng)Artificial Intelligence and Robotics影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence and Robotics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Artificial Intelligence and Robotics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence and Robotics被引頻次




書(shū)目名稱(chēng)Artificial Intelligence and Robotics被引頻次學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence and Robotics年度引用




書(shū)目名稱(chēng)Artificial Intelligence and Robotics年度引用學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence and Robotics讀者反饋




書(shū)目名稱(chēng)Artificial Intelligence and Robotics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:46:32 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:02:13 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:14 | 只看該作者
Classification and Application of Element,rk to acquire efficient anemometer state estimation. This method can monitor the abnormal state of the anemometer and reconstruct the faulty wind speed data. Finally, to demonstrate the efficiency of the approach, the condition of the WT anemometer is predicted using examples.
5#
發(fā)表于 2025-3-22 10:21:10 | 只看該作者
Die verschiedenen Anwendungsgebiete der FEM,e the influence of class division by calculating the average distance under various windows and measure the efficiency of window position for class division using information gain. Finally, transform the series according to the information gain. The research shows that the proposed DDTM method achieves superior classification results.
6#
發(fā)表于 2025-3-22 15:27:21 | 只看該作者
FEM-Formelsammlung Statik und Dynamikimulates certificate photo files. We then used a YOLOv5-based object detection network to train a model that can detect document photos in archive images. We also used a combination of PP-OCR text recognition and object detection to extract key information from document images.
7#
發(fā)表于 2025-3-22 20:15:47 | 只看該作者
8#
發(fā)表于 2025-3-22 21:52:51 | 只看該作者
https://doi.org/10.1007/978-3-642-79383-7hold objects. As a result, we achieved an approximately 7.2% improvement in accuracy compared to GR-Convnet. Additionally, using a real robot, we demonstrated a grasp success rate of 93.3% and 92.5% for household and adversarial objects, respectively.
9#
發(fā)表于 2025-3-23 03:42:45 | 只看該作者
,Enhanced Object Detection of?Abnormal Light Based on?Multi-scale Retinex with?Chromacity Preservatiin order to recover lost information. Our method was evaluated on the publicly available BDD 100k dataset, and the results showed a significant improvement in performance under abnormal lighting conditions, Compared to images without any processing, Yolo-v3 model improve 9.59. total mAP@[.5, .95], and Yolo-v4 model improves 10.86..
10#
發(fā)表于 2025-3-23 06:57:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 柞水县| 壶关县| 左权县| 八宿县| 武陟县| 原阳县| 永春县| 甘肃省| 蒙山县| 集贤县| 耒阳市| 安多县| 女性| 板桥市| 水富县| 莱州市| 浦城县| 宣化县| 兴海县| 马龙县| 荃湾区| 海口市| 苏州市| 敦煌市| 宁阳县| 斗六市| 永城市| 股票| 美姑县| 安远县| 水城县| 通河县| 大竹县| 凉山| 尚义县| 根河市| 芦溪县| 平湖市| 孝昌县| 开江县|