找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Natural Language; 6th Conference, AINL Andrey Filchenkov,Lidia Pivovarova,Jan ?i?ka Conference proceedings 2018

[復制鏈接]
樓主: 巡洋
41#
發(fā)表于 2025-3-28 18:05:06 | 只看該作者
https://doi.org/10.1007/978-90-368-3041-6vantage of both methods. This paper proposes to obtain low-level feature representation feeding frame-level descriptor sequences to a Long Short-Term Memory (LSTM) network, combine the outcome with the Principal Component Analysis (PCA) representation of utterance-level features, and make the final prediction with a logistic regression classifier.
42#
發(fā)表于 2025-3-28 22:08:48 | 只看該作者
43#
發(fā)表于 2025-3-29 01:13:48 | 只看該作者
44#
發(fā)表于 2025-3-29 07:00:19 | 只看該作者
Deep Learning for Acoustic Addressee Detection in Spoken Dialogue Systemslization to increase the training speed. A fully-connected neural network reaches an average recall of 0.78, a Long Short-Term Memory neural network shows an average recall of 0.65. Advantages and disadvantages of both architectures are provided for the particular task.
45#
發(fā)表于 2025-3-29 09:20:25 | 只看該作者
Combined Feature Representation for Emotion Classification from Russian Speechvantage of both methods. This paper proposes to obtain low-level feature representation feeding frame-level descriptor sequences to a Long Short-Term Memory (LSTM) network, combine the outcome with the Principal Component Analysis (PCA) representation of utterance-level features, and make the final prediction with a logistic regression classifier.
46#
發(fā)表于 2025-3-29 11:35:17 | 只看該作者
47#
發(fā)表于 2025-3-29 18:10:18 | 只看該作者
Morpheme Level Word Embeddingriments. Firstly, we describe how to build morpheme extractor from prepared vocabularies. Our extractor reached 91% accuracy on the vocabularies of known morpheme segmentation. Secondly we show the way how it can be applied for NLP tasks, and then we discuss our results, pros and cons, and our future work.
48#
發(fā)表于 2025-3-29 21:20:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:02 | 只看該作者
50#
發(fā)表于 2025-3-30 06:36:33 | 只看該作者
Tanmay,Lakshmi,Vijay Kumar Soni,Adarsh KumarFacebook status updates to extract interpretable features that we then use to identify Facebook users with certain negative psychological traits (the so-called Dark Triad: narcissism, psychopathy, and Machiavellianism) and to find the themes that are most important to such individuals.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
龙州县| 中卫市| 松滋市| 开阳县| 廊坊市| 陆河县| 登封市| 津南区| 宁远县| 顺平县| 胶州市| 磐石市| 西昌市| 土默特左旗| 宁武县| 郸城县| 错那县| 收藏| 南陵县| 苍梧县| 文成县| 湖南省| 新安县| 英德市| 嘉禾县| 澄江县| 嘉义县| 和顺县| 任丘市| 鹤岗市| 涡阳县| 连云港市| 恩施市| 毕节市| 容城县| 南木林县| 澎湖县| 盐城市| 丰县| 侯马市| 孙吴县|