找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Natural Language; 6th Conference, AINL Andrey Filchenkov,Lidia Pivovarova,Jan ?i?ka Conference proceedings 2018

[復(fù)制鏈接]
樓主: 巡洋
21#
發(fā)表于 2025-3-25 05:56:04 | 只看該作者
22#
發(fā)表于 2025-3-25 10:40:14 | 只看該作者
Andrey Filchenkov,Lidia Pivovarova,Jan ?i?kaIncludes supplementary material:
23#
發(fā)表于 2025-3-25 14:07:51 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/b/image/162256.jpg
24#
發(fā)表于 2025-3-25 17:14:18 | 只看該作者
25#
發(fā)表于 2025-3-25 21:59:03 | 只看該作者
978-3-319-71745-6Springer International Publishing AG 2018
26#
發(fā)表于 2025-3-26 01:40:13 | 只看該作者
Semantic Feature Aggregation for Gender Identification in Russian Facebook Russian. We collect Facebook posts of Russian-speaking users and apply them as a dataset for two topic modelling techniques and a distributional clustering approach. The output of the algorithms is applied as a feature aggregation method in a task of gender classification based on a smaller Faceboo
27#
發(fā)表于 2025-3-26 07:06:34 | 只看該作者
Using Linguistic Activity in Social Networks to Predict and Interpret Dark Psychological Traitsanging from psychology to marketing, but there are very few works of this kind on Russian-speaking samples. We use Latent Dirichlet Allocation on the Facebook status updates to extract interpretable features that we then use to identify Facebook users with certain negative psychological traits (the
28#
發(fā)表于 2025-3-26 12:13:06 | 只看該作者
29#
發(fā)表于 2025-3-26 14:53:53 | 只看該作者
Deep Learning for Acoustic Addressee Detection in Spoken Dialogue Systemsspeech addressed to real humans. In this work, several modalities were analyzed, and acoustic data has been chosen as the main modality by reason of the most flexible usability in modern SDSs. To resolve the problem of addressee detection, deep learning methods such as fully-connected neural network
30#
發(fā)表于 2025-3-26 17:36:53 | 只看該作者
Deep Neural Networks in Russian Speech Recognitionts. We propose applying various DNNs in automatic recognition of Russian continuous speech. We used different neural network models such as Convolutional Neural Networks (CNNs), modifications of Long short-term memory?(LSTM), Residual Networks and Recurrent Convolutional Networks (RCNNs). The presen
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠安县| 侯马市| 锡林浩特市| 垦利县| 涞源县| 灵寿县| 兴业县| 临猗县| 成安县| 兴海县| 鄯善县| 聂拉木县| 樟树市| 清河县| 高碑店市| 麻江县| 重庆市| 和田市| 留坝县| 垦利县| 岳普湖县| 堆龙德庆县| 临湘市| 永和县| 罗源县| 平泉县| 青州市| 江孜县| 安徽省| 丁青县| 子洲县| 海原县| 桑日县| 镇远县| 洛南县| 泾阳县| 山阳县| 龙川县| 舟山市| 开封市| 星子县|