找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence XXXVIII; 41st SGAI Internatio Max Bramer,Richard Ellis Conference proceedings 2021 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: 日月等
31#
發(fā)表于 2025-3-27 00:26:44 | 只看該作者
Probabilistic Rule Induction for Transparent CBR Under Uncertainty We show how probabilistic inductive logic programming (PILP) can be applied in CBR systems to make transparent decisions combining logic and probabilities. Then, we demonstrate how our approach can be applied in scenarios presenting uncertainty.
32#
發(fā)表于 2025-3-27 04:59:26 | 只看該作者
33#
發(fā)表于 2025-3-27 07:32:54 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/162164.jpg
34#
發(fā)表于 2025-3-27 12:52:45 | 只看該作者
35#
發(fā)表于 2025-3-27 16:00:06 | 只看該作者
https://doi.org/10.1007/978-3-030-58271-5representations including arbitrarily complex relationships between entities such as human interactions. This is particularly interesting in the context of social navigation, where relational information should be considered. This paper presents a model combining Graph Neural Network (GNN) and Convo
36#
發(fā)表于 2025-3-27 20:44:43 | 只看該作者
Counter-mapping platform urbanism, can be used to simulate spiking neural networks, and the standard learning rule is based on the timing of the spikes of the pre and post-synaptic neurons. This paper describes the use of these models to categorise documents by translating this Spike Timing Dependent Plasticity into an unsupervised
37#
發(fā)表于 2025-3-28 01:47:17 | 只看該作者
Impact of platforms on urban space,. In the case of model-free learning, the algorithm learns through trial and error in the target environment in contrast to model-based where the agent train in a learned or known environment instead..Model-free reinforcement learning shows promising results in simulated environments but falls short
38#
發(fā)表于 2025-3-28 06:07:04 | 只看該作者
Sanja Kutnjak Ivkovi?,M. R. Haberfeldno justification for generated solutions and these solutions are non-trivial to analyse in most cases. We propose that identifying the combinations of variables that strongly influence solution quality, and the nature of this relationship, represents a step towards explaining the choices made by a m
39#
發(fā)表于 2025-3-28 09:46:09 | 只看該作者
Sanja Kutnjak Ivkovi?,M. R. Haberfeldnclusions. In multi-agent settings, where several agents can advance arguments at the same time, understanding which agent has the most influence on a particular argument can improve an agent’s decision about which argument to advance next. In this paper, we introduce an argumentation framework with
40#
發(fā)表于 2025-3-28 11:07:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 19:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林省| 泾阳县| 金昌市| 新余市| 扶绥县| 云阳县| 寿光市| 噶尔县| 浙江省| 任丘市| 苏尼特左旗| 阳原县| 刚察县| 南乐县| 瑞安市| 湘潭县| 离岛区| 瑞金市| 金堂县| 堆龙德庆县| 新绛县| 铜山县| 石棉县| 鸡泽县| 永定县| 广南县| 宁国市| 焦作市| 平果县| 湄潭县| 镇原县| 怀柔区| 九江县| 沂南县| 莱芜市| 云梦县| 桦川县| 平湖市| 桦甸市| 托克托县| 文登市|