找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence XXXVIII; 41st SGAI Internatio Max Bramer,Richard Ellis Conference proceedings 2021 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
查看: 54072|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:06:07 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence XXXVIII
期刊簡稱41st SGAI Internatio
影響因子2023Max Bramer,Richard Ellis
視頻videohttp://file.papertrans.cn/163/162164/162164.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Intelligence XXXVIII; 41st SGAI Internatio Max Bramer,Richard Ellis Conference proceedings 2021 Springer Nature Switzerland AG 2
影響因子This book constitutes the proceedings of the 41st SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, AI 2021, which was supposed to be held in Cambridge, UK, in December 2021. The conference was held virtually due to the COVID-19 pandemic..The 22 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 37 submissions. The volume includes technical papers presenting new and innovative developments in the field as well as application papers presenting innovative applications of AI techniques in a number of subject domains. The papers are organized in the following topical sections: technical paper; machine learning; AI techniques; short technical stream papers; application papers; applications of machine learning; AI for medicine; advances in applied AI; and short application stream papers. .
Pindex Conference proceedings 2021
The information of publication is updating

書目名稱Artificial Intelligence XXXVIII影響因子(影響力)




書目名稱Artificial Intelligence XXXVIII影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence XXXVIII網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence XXXVIII網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence XXXVIII被引頻次




書目名稱Artificial Intelligence XXXVIII被引頻次學(xué)科排名




書目名稱Artificial Intelligence XXXVIII年度引用




書目名稱Artificial Intelligence XXXVIII年度引用學(xué)科排名




書目名稱Artificial Intelligence XXXVIII讀者反饋




書目名稱Artificial Intelligence XXXVIII讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:57 | 只看該作者
Generation of Human-Aware Navigation Maps Using Graph Neural Networks tasks. The results outperform similar state-of-the-art-methods considering the accuracy for the dataset and the navigation metrics used. The applications of the proposed framework are not limited to human-aware navigation, it could be applied to other fields where cost map generation is needed.
板凳
發(fā)表于 2025-3-22 00:39:25 | 只看該作者
地板
發(fā)表于 2025-3-22 06:43:58 | 只看該作者
AI Methods of Autonomous Geological Target Selection in the Hunt for Signs of Extraterrestrial Lifee extracted texture information to a rotationally invariant form. The highest accuracy in positive rock type identification was 85% which was achieved by using a weighted binarization of the texture features to perform a circular shift on the feature vector.
5#
發(fā)表于 2025-3-22 09:09:42 | 只看該作者
Named Entity Recognition and Relation Extraction for COVID-19: Explainable Active Learning with Wordord2vec models with additional examples of use from the biomedical literature. We propose interpreting the NER and REX tasks for COVID-19 as Question Answering (QA) incorporating general medical knowledge within the question, e.g. “does ‘cough’ (n-gram) belong to ‘clinical presentation/symptoms’ for
6#
發(fā)表于 2025-3-22 13:42:03 | 只看該作者
7#
發(fā)表于 2025-3-22 21:05:16 | 只看該作者
Exploring Place in the Australian Landscapeultiple controls and statistical analysis, we find clear evidence that fine-tuned commonsense language models still do not generalize well, even with moderate changes to the experimental setup, and may, in fact, be susceptible to dataset bias.
8#
發(fā)表于 2025-3-23 00:49:26 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:09 | 只看該作者
Impact of platforms on urban space,namics model. However, it is challenging to achieve good accuracy on dynamics models for highly complex domains due to stochasticity and compounding noise in the system. A majority of model-based RL focuses on dynamics models that derive policies from observation space. Deriving policies from observ
10#
發(fā)表于 2025-3-23 09:21:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 19:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏州市| 黄浦区| 澎湖县| 岗巴县| 堆龙德庆县| 通许县| 嘉义县| 确山县| 柳河县| 施秉县| 山西省| 庄河市| 青浦区| 吴江市| 察雅县| 宜州市| 莆田市| 海林市| 阳原县| 高雄市| 凤凰县| 蒙阴县| 清徐县| 遂溪县| 永定县| 台北县| 临颍县| 侯马市| 农安县| 丹棱县| 南和县| 竹溪县| 阿勒泰市| 高密市| 察雅县| 剑阁县| 泾阳县| 尼玛县| 开江县| 噶尔县| 龙里县|