找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arnon Avron on Semantics and Proof Theory of Non-Classical Logics; Ofer Arieli,Anna Zamansky Book 2021 The Editor(s) (if applicable) and T

[復制鏈接]
樓主: 吸收
31#
發(fā)表于 2025-3-27 00:38:28 | 只看該作者
Comments on the Papers,This final chapter includes some comments of mine about the papers in this volume and their connections with my work. I am very grateful to all the authors of these papers for their nice contributions!
32#
發(fā)表于 2025-3-27 05:00:58 | 只看該作者
33#
發(fā)表于 2025-3-27 05:37:32 | 只看該作者
Jo?o Reis,Paula Espírito Santo,Nuno Mel?osely related to linear logic. We use insights from the relational semantics of relevance logics together with a new version of the . in our semantics for logics with disjunction (but no conjunction). The ideal-based semantics, which takes co-theories to be situations, . the theory-based semantics for logics with conjunction (but no disjunction).
34#
發(fā)表于 2025-3-27 10:29:26 | 只看該作者
35#
發(fā)表于 2025-3-27 15:04:08 | 只看該作者
36#
發(fā)表于 2025-3-27 19:32:07 | 只看該作者
37#
發(fā)表于 2025-3-27 23:11:31 | 只看該作者
Mehdi Snene,Jolita Ralyté,Jean-Henry Morinde a theorem of Arnon Avron that reduces the validity of a disjunction of multiplicative formulas in the “R-mingle” logic . to the validity of a linear combination of these formulas, and Gordan’s theorem for solutions of linear systems over the real numbers that yields an analogous reduction for val
38#
發(fā)表于 2025-3-28 04:24:21 | 只看該作者
39#
發(fā)表于 2025-3-28 10:10:49 | 只看該作者
40#
發(fā)表于 2025-3-28 11:01:30 | 只看該作者
Elena Fleac?,Bogdan Fleac?,Sanda Maiduc the metaconsequence level. Specifically, it does not satisfy a cut rule. It has been proposed for use in work on theories of truth because it avoids some objectionable features arising from the use of classical logic. Here we are not interested in applications, but in the formal details themselves.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
崇仁县| 甘孜县| 兴山县| 虞城县| 高邑县| 孝义市| 兴隆县| 织金县| 当雄县| 鄂伦春自治旗| 丰宁| 金沙县| 田东县| 门头沟区| 青冈县| 吉安市| 梁山县| 扶绥县| 绥化市| 运城市| 井陉县| 兴隆县| 榕江县| 汤阴县| 梅州市| 确山县| 舒城县| 昌平区| 吉安县| 怀柔区| 罗江县| 东安县| 五莲县| 台东县| 青神县| 临城县| 确山县| 会理县| 鞍山市| 翁源县| 临漳县|