找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arnon Avron on Semantics and Proof Theory of Non-Classical Logics; Ofer Arieli,Anna Zamansky Book 2021 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 吸收
11#
發(fā)表于 2025-3-23 13:39:02 | 只看該作者
12#
發(fā)表于 2025-3-23 17:32:31 | 只看該作者
Consequence Relations with Real Truth Values,ion ., an appropriate fault-tolerance property of any logic of .-valued observables. The directional derivability of the functions coded by all . and by . then provides a quantitative formulation of our refinement of Bolzano-Tarski consequence, which turns out to coincide with the time-honored syntactic ?-consequence.
13#
發(fā)表于 2025-3-23 18:31:01 | 只看該作者
Elena Fleac?,Bogdan Fleac?,Sanda Maiducary connective ., (. a wff) together with some other axioms for some additional connectives, how can we tell whether . is indeed a form of negation of .? Are there some axioms which the connective “.” must satisfy in order to qualify . as a negation?
14#
發(fā)表于 2025-3-23 22:24:16 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:17 | 只看該作者
Credal Calculi, Evidence, and Consistency,possibility and necessity functions over the Logics of Formal Inconsistency are obtained and it is shown, by revisiting a paradigmatic example, how paraconsistent possibility and necessity reasoning can, in general, attain realistic models for artificial judgement. We will call such models ., emphasizing some of their appealing consequences.
16#
發(fā)表于 2025-3-24 06:55:55 | 只看該作者
,Degree-Preserving G?del Logics with an Involution: Intermediate Logics and (Ideal) Paraconsistency,onsistency, and we fully characterize the ideal and the saturated paraconsistent logics between . and CPL. We also identify a large family of saturated paraconsistent logics in the family of intermediate logics for degree-preserving finite-valued ?ukasiewicz logics.
17#
發(fā)表于 2025-3-24 14:23:33 | 只看該作者
18#
發(fā)表于 2025-3-24 16:49:12 | 只看該作者
Geometric Rules in Infinitary Logic,finitary generalizations as extensions of sequent calculi for both classical and intuitionistic infinitary logic. As an application, a simple proof of the infinitary Barr’s theorem without the axioms of choice is shown.
19#
發(fā)表于 2025-3-24 20:04:54 | 只看該作者
20#
發(fā)表于 2025-3-25 00:06:20 | 只看該作者
Elena Fleac?,Bogdan Fleac?,Sanda Maiduconsistency, and we fully characterize the ideal and the saturated paraconsistent logics between . and CPL. We also identify a large family of saturated paraconsistent logics in the family of intermediate logics for degree-preserving finite-valued ?ukasiewicz logics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 日照市| 芜湖县| 灵丘县| 宜州市| 万州区| 凤庆县| 叙永县| 泸州市| 玉林市| 当阳市| 宁化县| 延川县| 阳江市| 宝坻区| 靖西县| 启东市| 青铜峡市| 阳泉市| 瑞金市| 双江| 民权县| 东乡族自治县| 巴东县| 南开区| 攀枝花市| 高邑县| 西贡区| 修文县| 汝州市| 灵寿县| 涿鹿县| 汨罗市| 噶尔县| 海宁市| 怀化市| 陕西省| 米泉市| 南阳市| 汉源县| 兴山县|