找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Quadratic Forms; Goro Shimura Book 2010 Springer Science+Business Media, LLC 2010 Algebra.Clifford algebras.Quadratic Diopha

[復制鏈接]
查看: 23277|回復: 39
樓主
發(fā)表于 2025-3-21 19:55:56 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Arithmetic of Quadratic Forms
影響因子2023Goro Shimura
視頻videohttp://file.papertrans.cn/162/161622/161622.mp4
發(fā)行地址Discusses algebraic number theory and the theory of semisimple algebras.Discusses classification of quadratic forms over the ring of algebraic integers.Discusses local class field theory.Presents a ne
學科分類Springer Monographs in Mathematics
圖書封面Titlebook: Arithmetic of Quadratic Forms;  Goro Shimura Book 2010 Springer Science+Business Media, LLC 2010 Algebra.Clifford algebras.Quadratic Diopha
影響因子This book can be divided into two parts. The ?rst part is preliminary and consists of algebraic number theory and the theory of semisimple algebras. The raison d’? etre of the book is in the second part, and so let us ?rst explain the contents of the second part. There are two principal topics: (A) Classi?cation of quadratic forms; (B) Quadratic Diophantine equations. Topic (A) can be further divided into two types of theories: (a1) Classi?cation over an algebraic number ?eld; (a2) Classi?cation over the ring of algebraic integers. To classify a quadratic form ? over an algebraic number ?eld F, almost all previous authors followed the methods of Helmut Hasse. Namely, one ?rst takes ? in the diagonal form and associates an invariant to it at each prime spot of F, using the diagonal entries. A superior method was introduced by Martin Eichler in 1952, but strangely it was almost completely ignored, until I resurrected it in one of my recent papers. We associate an invariant to ? at each prime spot, which is the same as Eichler’s, but we de?ne it in a di?erent and more direct way, using Cli?ord algebras. In Sections 27 and 28 we give an exposition of this theory. At some point we need
Pindex Book 2010
The information of publication is updating

書目名稱Arithmetic of Quadratic Forms影響因子(影響力)




書目名稱Arithmetic of Quadratic Forms影響因子(影響力)學科排名




書目名稱Arithmetic of Quadratic Forms網絡公開度




書目名稱Arithmetic of Quadratic Forms網絡公開度學科排名




書目名稱Arithmetic of Quadratic Forms被引頻次




書目名稱Arithmetic of Quadratic Forms被引頻次學科排名




書目名稱Arithmetic of Quadratic Forms年度引用




書目名稱Arithmetic of Quadratic Forms年度引用學科排名




書目名稱Arithmetic of Quadratic Forms讀者反饋




書目名稱Arithmetic of Quadratic Forms讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:42:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:29:46 | 只看該作者
Goro ShimuraDiscusses algebraic number theory and the theory of semisimple algebras.Discusses classification of quadratic forms over the ring of algebraic integers.Discusses local class field theory.Presents a ne
地板
發(fā)表于 2025-3-22 05:26:14 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/b/image/161622.jpg
5#
發(fā)表于 2025-3-22 10:57:00 | 只看該作者
Algebras Over a Field,ssociative ring . which is also a vector space over . such that . for . and . If . has an identity element, we denote it by . or simply by . Identifying . with . for every . we can view . as a subring of ..
6#
發(fā)表于 2025-3-22 16:19:49 | 只看該作者
7#
發(fā)表于 2025-3-22 18:04:05 | 只看該作者
Jeff R. Wright,Lyna L. Wiggins,T. John Kiml . an . over ., or simply an .., if . for every . and . If . has an identity element . then identifying . with . we can view . as a subfield of .. Notice that . and so two laws of multiplication for the elements of . (one in the vector space and the other in the ring) are the same. Every field exte
8#
發(fā)表于 2025-3-22 23:28:16 | 只看該作者
Eric J. Heikkila,Edwin J. Blewettssociative ring . which is also a vector space over . such that . for . and . If . has an identity element, we denote it by . or simply by . Identifying . with . for every . we can view . as a subring of ..
9#
發(fā)表于 2025-3-23 03:50:59 | 只看該作者
10#
發(fā)表于 2025-3-23 06:22:10 | 只看該作者
https://doi.org/10.1007/978-3-642-83126-3We take a base field . and consider a finite-dimensional vector space . over . and an .-valued .-bilinear form . We call, as usual, .. if . for every .
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 12:11
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云林县| 秦安县| 湄潭县| 三明市| 司法| 安岳县| 余庆县| 繁峙县| 射洪县| 南丰县| 固安县| 勐海县| 辽源市| 西昌市| 阿克陶县| 嘉峪关市| 江都市| 丰顺县| 盐亭县| 金川县| 绥阳县| 永济市| 湖南省| 新乐市| 金华市| 永福县| 景洪市| 同德县| 晋江市| 陆川县| 云梦县| 龙州县| 福泉市| 文昌市| 来安县| 利辛县| 咸丰县| 鹤岗市| 正镶白旗| 福海县| 格尔木市|