找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Quadratic Forms; Goro Shimura Book 2010 Springer Science+Business Media, LLC 2010 Algebra.Clifford algebras.Quadratic Diopha

[復(fù)制鏈接]
查看: 23276|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:55:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Arithmetic of Quadratic Forms
影響因子2023Goro Shimura
視頻videohttp://file.papertrans.cn/162/161622/161622.mp4
發(fā)行地址Discusses algebraic number theory and the theory of semisimple algebras.Discusses classification of quadratic forms over the ring of algebraic integers.Discusses local class field theory.Presents a ne
學(xué)科分類Springer Monographs in Mathematics
圖書封面Titlebook: Arithmetic of Quadratic Forms;  Goro Shimura Book 2010 Springer Science+Business Media, LLC 2010 Algebra.Clifford algebras.Quadratic Diopha
影響因子This book can be divided into two parts. The ?rst part is preliminary and consists of algebraic number theory and the theory of semisimple algebras. The raison d’? etre of the book is in the second part, and so let us ?rst explain the contents of the second part. There are two principal topics: (A) Classi?cation of quadratic forms; (B) Quadratic Diophantine equations. Topic (A) can be further divided into two types of theories: (a1) Classi?cation over an algebraic number ?eld; (a2) Classi?cation over the ring of algebraic integers. To classify a quadratic form ? over an algebraic number ?eld F, almost all previous authors followed the methods of Helmut Hasse. Namely, one ?rst takes ? in the diagonal form and associates an invariant to it at each prime spot of F, using the diagonal entries. A superior method was introduced by Martin Eichler in 1952, but strangely it was almost completely ignored, until I resurrected it in one of my recent papers. We associate an invariant to ? at each prime spot, which is the same as Eichler’s, but we de?ne it in a di?erent and more direct way, using Cli?ord algebras. In Sections 27 and 28 we give an exposition of this theory. At some point we need
Pindex Book 2010
The information of publication is updating

書目名稱Arithmetic of Quadratic Forms影響因子(影響力)




書目名稱Arithmetic of Quadratic Forms影響因子(影響力)學(xué)科排名




書目名稱Arithmetic of Quadratic Forms網(wǎng)絡(luò)公開(kāi)度




書目名稱Arithmetic of Quadratic Forms網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Arithmetic of Quadratic Forms被引頻次




書目名稱Arithmetic of Quadratic Forms被引頻次學(xué)科排名




書目名稱Arithmetic of Quadratic Forms年度引用




書目名稱Arithmetic of Quadratic Forms年度引用學(xué)科排名




書目名稱Arithmetic of Quadratic Forms讀者反饋




書目名稱Arithmetic of Quadratic Forms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:42:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:29:46 | 只看該作者
Goro ShimuraDiscusses algebraic number theory and the theory of semisimple algebras.Discusses classification of quadratic forms over the ring of algebraic integers.Discusses local class field theory.Presents a ne
地板
發(fā)表于 2025-3-22 05:26:14 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/b/image/161622.jpg
5#
發(fā)表于 2025-3-22 10:57:00 | 只看該作者
Algebras Over a Field,ssociative ring . which is also a vector space over . such that . for . and . If . has an identity element, we denote it by . or simply by . Identifying . with . for every . we can view . as a subring of ..
6#
發(fā)表于 2025-3-22 16:19:49 | 只看該作者
7#
發(fā)表于 2025-3-22 18:04:05 | 只看該作者
Jeff R. Wright,Lyna L. Wiggins,T. John Kiml . an . over ., or simply an .., if . for every . and . If . has an identity element . then identifying . with . we can view . as a subfield of .. Notice that . and so two laws of multiplication for the elements of . (one in the vector space and the other in the ring) are the same. Every field exte
8#
發(fā)表于 2025-3-22 23:28:16 | 只看該作者
Eric J. Heikkila,Edwin J. Blewettssociative ring . which is also a vector space over . such that . for . and . If . has an identity element, we denote it by . or simply by . Identifying . with . for every . we can view . as a subring of ..
9#
發(fā)表于 2025-3-23 03:50:59 | 只看該作者
10#
發(fā)表于 2025-3-23 06:22:10 | 只看該作者
https://doi.org/10.1007/978-3-642-83126-3We take a base field . and consider a finite-dimensional vector space . over . and an .-valued .-bilinear form . We call, as usual, .. if . for every .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 12:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武安市| 崇文区| 屏山县| 吴旗县| 达州市| 杭锦后旗| 二连浩特市| 施甸县| 松滋市| 福建省| 泰和县| 延庆县| 漾濞| 安宁市| 潞城市| 皋兰县| 泰宁县| 吉首市| 高雄市| 德保县| 湘西| 溧水县| 噶尔县| 寻甸| 台中市| 正镶白旗| 德兴市| 岚皋县| 凌海市| 县级市| 搜索| 兰考县| 南丹县| 达州市| 岑巩县| 吴忠市| 遵化市| 响水县| 珠海市| 宜章县| 武胜县|