找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry Around Hypergeometric Functions; Lecture Notes of a C Rolf-Peter Holzapfel,A. Muhammed Uluda?,Masaaki Yo Book 2007

[復(fù)制鏈接]
樓主: 威風(fēng)
31#
發(fā)表于 2025-3-27 00:56:03 | 只看該作者
Expert Oracle Database 10g AdministrationThe hypergeometric function is a slight generalization of the power fucntion. We will see this by the Schwarz map of the hypergeometric equation focussing on the behavior of this map when the local exponent-differences are purely imaginary
32#
發(fā)表于 2025-3-27 02:08:19 | 只看該作者
Using Data Pump Export and ImportThis article contains the open problems discussed during the problem session of the CIMPA summer school “Arithmetic and Geometry Around Hypergeometric Functions” held at Galatasaray University, ?stanbul, 2005.
33#
發(fā)表于 2025-3-27 06:26:22 | 只看該作者
Hyperbolic Geometry and the Moduli Space of Real Binary Sextics,The moduli space of real 6-tuples in ?.. is modeled on a quotient of hyperbolic 3-space by a nonarithmetic lattice in Isom... This is partly an expository note; the first part of it is an introduction to orbifolds and hyperbolic reflection groups.
34#
發(fā)表于 2025-3-27 10:30:16 | 只看該作者
,Gauss’ Hypergeometric Function,We give a basic introduction to the properties of Gauss’ hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hypergeometric equation.
35#
發(fā)表于 2025-3-27 16:57:18 | 只看該作者
36#
發(fā)表于 2025-3-27 21:36:57 | 只看該作者
,Uniformization by Lauricella Functions — An Overview of the Theory of Deligne-Mostow,This is a survey of the Deligne-Mostow theory of Lauricella functions, or what almost amounts to the same, of the period map for cyclic coverings of the Riemann sphere.
37#
發(fā)表于 2025-3-27 23:17:21 | 只看該作者
Orbifolds and Their Uniformization,This is an introduction to complex orbifolds with an emphasis on orbifolds in dimension 2 and covering relations between them.
38#
發(fā)表于 2025-3-28 02:50:24 | 只看該作者
39#
發(fā)表于 2025-3-28 07:22:11 | 只看該作者
Problem Session,This article contains the open problems discussed during the problem session of the CIMPA summer school “Arithmetic and Geometry Around Hypergeometric Functions” held at Galatasaray University, ?stanbul, 2005.
40#
發(fā)表于 2025-3-28 10:28:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平顶山市| 普定县| 专栏| 苍南县| 中卫市| 库伦旗| 青龙| 珲春市| 盈江县| 巨鹿县| 纳雍县| 商城县| 龙门县| 自治县| 浦北县| 肇东市| 延川县| 南丰县| 涞水县| 金溪县| 阿拉善右旗| 株洲县| 法库县| 南部县| 牡丹江市| 盱眙县| 玉屏| 娄烦县| 无为县| 塔城市| 伊通| 重庆市| 砚山县| 平罗县| 石屏县| 巴彦县| 湖州市| 山阳县| 鄂伦春自治旗| 上饶县| 当涂县|