找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry Around Hypergeometric Functions; Lecture Notes of a C Rolf-Peter Holzapfel,A. Muhammed Uluda?,Masaaki Yo Book 2007

[復(fù)制鏈接]
樓主: 威風(fēng)
21#
發(fā)表于 2025-3-25 07:06:43 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:44 | 只看該作者
Invariant Functions with Respect to the Whitehead-Link,and for a few groups commensurable with .. We make use of theta functions on the bounded symmetric domain . of type . . and an embedding . : ?. → .. The quotient spaces of ?. by these groups are realized by these invariant functions. We review classical results on the .-function, the .-function and
23#
發(fā)表于 2025-3-25 14:41:22 | 只看該作者
24#
發(fā)表于 2025-3-25 17:28:41 | 只看該作者
Algebraic Values of Schwarz Triangle Functions,at algebraic arguments? The answer is based mainly on considerations of complex multiplication of certain Prym varieties in Jacobians of hypergeometric curves. The paper can serve as an introduction to transcendence techniques for hypergeometric functions, but contains also new results and examples.
25#
發(fā)表于 2025-3-26 00:00:49 | 只看該作者
GKZ Hypergeometric Structures,eory of hypergeometric structures of Gelfand, Kapranov and Zelevinsky, including Differential Equations, Integrals and Series, with emphasis on the latter. The Secondary Fan is constructed and subsequently used to describe the ‘geography’ of the domains of convergence of the Γ-series. A solution to
26#
發(fā)表于 2025-3-26 01:08:12 | 只看該作者
27#
發(fā)表于 2025-3-26 06:37:48 | 只看該作者
Business object implementation,We give a basic introduction to the properties of Gauss’ hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hypergeometric equation.
28#
發(fā)表于 2025-3-26 10:38:33 | 只看該作者
29#
發(fā)表于 2025-3-26 12:54:19 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:34 | 只看該作者
Expert Oracle Database 10g AdministrationThis is an introduction to complex orbifolds with an emphasis on orbifolds in dimension 2 and covering relations between them.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四子王旗| 永州市| 盐山县| 寻甸| 阿拉尔市| 木兰县| 城固县| 天津市| 东辽县| 上饶县| 辽源市| 股票| 如皋市| 崇礼县| 山东省| 商南县| 方山县| 通州市| 安溪县| 聊城市| 凤凰县| 钟山县| 张掖市| 玛纳斯县| 庄浪县| 盐亭县| 镇雄县| 习水县| 湘阴县| 汨罗市| 丹东市| 中牟县| 新绛县| 大渡口区| 漳浦县| 石狮市| 永城市| 千阳县| 七台河市| 彭州市| 米林县|