找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry; Papers Dedicated to Michael Artin,John Tate Book 1983 Springer Science+Business Media New York 1983 Multiplicatio

[復(fù)制鏈接]
樓主: 巡洋
31#
發(fā)表于 2025-3-27 00:13:49 | 只看該作者
32#
發(fā)表于 2025-3-27 03:48:25 | 只看該作者
,Generators of the Néron-Severi Group of a Fermat Surface,vial work before one can determine the Picard number of a given variety, let alone the full structure of its Néron-Severi group. This is the case even for algebraic surfaces over the field of complex numbers, where it can be regarded as the subgroup of the cohomology group ..(., ?) characterized by the Lefschetz criterion.
33#
發(fā)表于 2025-3-27 07:34:31 | 只看該作者
The Action of an Automorphism of , On a Shimura Variety and its Special Points,he proof is extended to cover all Shimura varieties. As a consequence, one obtains a complete proof of Shimura’s conjecture on the existence of canonical models. The main new ingredients in the proof are the results of Kazhdan [7] and the methods of Borovoi [2].
34#
發(fā)表于 2025-3-27 11:26:25 | 只看該作者
35#
發(fā)表于 2025-3-27 13:56:45 | 只看該作者
Linear Elastic Fracture Mechanics, is to conjecture such bounds for a suitable basis. Indeed, .?.(.) is a vector space over . with a positive definite quadratic form given by the Néron-Tate height: if . is defined by the equation ., and . = (.) is a rational point with . = . written as a fraction in lowest form, then one defines the .-height ..
36#
發(fā)表于 2025-3-27 18:14:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:40:04 | 只看該作者
38#
發(fā)表于 2025-3-28 04:33:29 | 只看該作者
39#
發(fā)表于 2025-3-28 06:56:07 | 只看該作者
https://doi.org/10.1007/b118073fact, recently Ogus has used these results to apply the basic Rudakov-Shafarevich result on existence and smoothness of moduli for K3 surfaces in characteristic . to the study of the moduli space when . = 2.
40#
發(fā)表于 2025-3-28 13:51:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岢岚县| 合川市| 兴国县| 司法| 桐柏县| 任丘市| 宾川县| 汝州市| 贺州市| 高密市| 西丰县| 镇雄县| 辽阳市| 新乐市| 定结县| 三原县| 云龙县| 曲松县| 双桥区| 宁都县| 嘉峪关市| 边坝县| 石门县| 任丘市| 漳浦县| 永康市| 扶风县| 荆门市| 灵武市| 珲春市| 丹巴县| 拜泉县| 望城县| 迭部县| 房山区| 新闻| 迁安市| 安西县| 九龙城区| 芦溪县| 屏边|