找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry; Papers Dedicated to Michael Artin,John Tate Book 1983 Springer Science+Business Media New York 1983 Multiplicatio

[復(fù)制鏈接]
樓主: 巡洋
31#
發(fā)表于 2025-3-27 00:13:49 | 只看該作者
32#
發(fā)表于 2025-3-27 03:48:25 | 只看該作者
,Generators of the Néron-Severi Group of a Fermat Surface,vial work before one can determine the Picard number of a given variety, let alone the full structure of its Néron-Severi group. This is the case even for algebraic surfaces over the field of complex numbers, where it can be regarded as the subgroup of the cohomology group ..(., ?) characterized by the Lefschetz criterion.
33#
發(fā)表于 2025-3-27 07:34:31 | 只看該作者
The Action of an Automorphism of , On a Shimura Variety and its Special Points,he proof is extended to cover all Shimura varieties. As a consequence, one obtains a complete proof of Shimura’s conjecture on the existence of canonical models. The main new ingredients in the proof are the results of Kazhdan [7] and the methods of Borovoi [2].
34#
發(fā)表于 2025-3-27 11:26:25 | 只看該作者
35#
發(fā)表于 2025-3-27 13:56:45 | 只看該作者
Linear Elastic Fracture Mechanics, is to conjecture such bounds for a suitable basis. Indeed, .?.(.) is a vector space over . with a positive definite quadratic form given by the Néron-Tate height: if . is defined by the equation ., and . = (.) is a rational point with . = . written as a fraction in lowest form, then one defines the .-height ..
36#
發(fā)表于 2025-3-27 18:14:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:40:04 | 只看該作者
38#
發(fā)表于 2025-3-28 04:33:29 | 只看該作者
39#
發(fā)表于 2025-3-28 06:56:07 | 只看該作者
https://doi.org/10.1007/b118073fact, recently Ogus has used these results to apply the basic Rudakov-Shafarevich result on existence and smoothness of moduli for K3 surfaces in characteristic . to the study of the moduli space when . = 2.
40#
發(fā)表于 2025-3-28 13:51:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐池县| 岫岩| 璧山县| 康平县| 巴中市| 县级市| 长顺县| 高邮市| 屯门区| 封开县| 新河县| 长宁县| 临武县| 泽库县| 吉安市| 龙陵县| 信阳市| 全椒县| 镇远县| 永兴县| 南投县| 桃园县| 桐庐县| 连平县| 车致| 衡东县| 聂荣县| 庆阳市| 德庆县| 读书| 定襄县| 博爱县| 奉贤区| 简阳市| 敦煌市| 阜南县| 长沙市| 达拉特旗| 临猗县| 黄大仙区| 定远县|