找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry; Papers Dedicated to Michael Artin,John Tate Book 1983 Springer Science+Business Media New York 1983 Multiplicatio

[復(fù)制鏈接]
樓主: 巡洋
11#
發(fā)表于 2025-3-23 12:37:14 | 只看該作者
Zeta-Functions of Varieties Over Finite Fields at s=1,Let . be a finite field of cardinality . = ... Let.be a fixed algebraic closure of .. Let . be a smooth projective algebraic variety of dimension . over . such that.is connected.
12#
發(fā)表于 2025-3-23 15:03:24 | 只看該作者
The Torelli Theorem for Ordinary K3 Surfaces over Finite Fields,Shafarevich’s and Piatetski-Shapiro’s proof of the Torelli theorem for K3 surfaces over C [13] is one of the most beautiful proofs in complex algebraic geometry.
13#
發(fā)表于 2025-3-23 20:03:53 | 只看該作者
14#
發(fā)表于 2025-3-23 22:30:00 | 只看該作者
https://doi.org/10.1007/978-1-4757-9284-3Multiplication; arithmetic; automorphic forms; automorphism; cohomology; polynomial; torsion
15#
發(fā)表于 2025-3-24 03:02:48 | 只看該作者
16#
發(fā)表于 2025-3-24 07:26:54 | 只看該作者
17#
發(fā)表于 2025-3-24 13:34:41 | 只看該作者
18#
發(fā)表于 2025-3-24 15:10:34 | 只看該作者
Fracture Toughness Correlations,al point) is finitely generated. His proof was somewhat indirect. In 1928 Weil [5] in his thesis generalized Mordell’s result to abelian varieties of any dimension and to any algebraic number field as ground field. At the same time, Weil [6] gave a very simple and elegant proof of Mordell’s original
19#
發(fā)表于 2025-3-24 19:33:45 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:20 | 只看該作者
Linear Elastic Fracture Mechanics,as worked on the arithmetic of elliptic curves is acutely aware, it is still dominated today, despite its long and rich history, by a wealth of tantilizing conjectures, which are convincingly supported by numerical evidence. The most important amongst these conjectures, at least from the point of vi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大港区| 图木舒克市| 江川县| 策勒县| 横峰县| 湖北省| 芦溪县| 太谷县| 姚安县| 息烽县| 临沭县| 深州市| 白水县| 英德市| 洮南市| 盐源县| 石城县| 富川| 常山县| 丹寨县| 临安市| 滁州市| 金塔县| 修水县| 中江县| 黑山县| 浦城县| 陵川县| 星子县| 福州市| 普格县| 雅安市| 鹿泉市| 元江| 维西| 安西县| 大邑县| 宁夏| 遂昌县| 固始县| 祁东县|