找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Algebraic Circuits; Antonio Lloris Ruiz,Encarnación Castillo Morales,M Book 2021 Springer Nature Switzerland AG 2021 Galois

[復制鏈接]
樓主: chondrocyte
31#
發(fā)表于 2025-3-26 21:30:14 | 只看該作者
32#
發(fā)表于 2025-3-27 01:40:18 | 只看該作者
Olga Poleshchuk,Evgeniy Komarovifically to the circuits related to the finite fields GF(.) and GF(.), being . prime, following the same structure of Chap.?.. The theoretical foundations related to the Galois fields, algebra of polynomials and, particularly so now interested, related to GF(.) and to GF(.) are summarized in Appendi
33#
發(fā)表于 2025-3-27 05:53:59 | 只看該作者
Building Smart Web Applications,The basic algebraic circuits, linear feedback shift registers and cellular automata, are studied in this Chapter.
34#
發(fā)表于 2025-3-27 10:48:54 | 只看該作者
Visualization and Graphical User Interfaces,After the presentation of the basic algebraic circuits, this chapter is specifically dedicated to the circuits based on the finite fields GF(2.). Finite fields or Galois fields have a variety of applications in several areas such as cryptography, coding and digital signal processing.
35#
發(fā)表于 2025-3-27 15:47:34 | 只看該作者
36#
發(fā)表于 2025-3-27 21:04:45 | 只看該作者
Basic Algebraic Circuits,The basic algebraic circuits, linear feedback shift registers and cellular automata, are studied in this Chapter.
37#
發(fā)表于 2025-3-28 01:17:17 | 只看該作者
38#
發(fā)表于 2025-3-28 05:51:24 | 只看該作者
39#
發(fā)表于 2025-3-28 07:07:24 | 只看該作者
40#
發(fā)表于 2025-3-28 11:44:27 | 只看該作者
https://doi.org/10.37307/b.978-3-503-20914-9apter. Specifically, the design of adders, subtracters, multipliers, dividers, comparators and shifters are studied, with the objective of providing the design guidelines for these specific application circuits. The arithmetic circuits presented will be used in the next chapters for the implementation of algebraic circuits.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 16:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新郑市| 祁连县| 巴林左旗| 沙田区| 禹州市| 城固县| 咸丰县| 晋城| 庆安县| 英山县| 元谋县| 怀柔区| 五大连池市| 康乐县| 海兴县| 深州市| 温泉县| 永平县| 台中县| 织金县| 兴文县| 横峰县| 尚志市| 山东| 白水县| 新绛县| 博乐市| 莱州市| 灵武市| 武平县| 汉阴县| 甘谷县| 尚志市| 南康市| 商洛市| 霍州市| 宁都县| 吉安县| 仁化县| 保德县| 泾源县|