找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Algebraic Circuits; Antonio Lloris Ruiz,Encarnación Castillo Morales,M Book 2021 Springer Nature Switzerland AG 2021 Galois

[復(fù)制鏈接]
查看: 22794|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:37:26 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Arithmetic and Algebraic Circuits
影響因子2023Antonio Lloris Ruiz,Encarnación Castillo Morales,M
視頻videohttp://file.papertrans.cn/162/161603/161603.mp4
發(fā)行地址First self-contained reference guide to arithmetic and algebraic circuits.Offers the necessary background for the design of specific circuits.Describes cutting-edge algorithms and optimized circuits
學(xué)科分類Intelligent Systems Reference Library
圖書封面Titlebook: Arithmetic and Algebraic Circuits;  Antonio Lloris Ruiz,Encarnación Castillo Morales,M Book 2021 Springer Nature Switzerland AG 2021 Galois
影響因子This book presents a complete and accurate study of arithmetic and algebraic circuits. The first part offers a review of all important basic concepts: it describes simple circuits for the implementation of some basic arithmetic operations; it introduces theoretical basis for residue number systems; and describes some fundamental circuits for implementing the main modular operations that will be used in the text. Moreover, the book discusses floating-point representation of real numbers and the IEEE 754 standard.? The second and core part of the book offers a deep study of arithmetic circuits and specific algorithms for their implementation. It covers the CORDIC algorithm, and optimized arithmetic circuits recently developed by the authors for adders and subtractors, as well as multipliers, dividers and special functions. It describes the implementation of basic algebraic circuits, such as LFSRs and cellular automata. Finally, it offers a complete study of Galois fields, showing some exemplary applications and discussing the advantages in comparison to other methods. This dense, self-contained text provides students, researchers and engineers, with extensive knowledge on and a deep
Pindex Book 2021
The information of publication is updating

書目名稱Arithmetic and Algebraic Circuits影響因子(影響力)




書目名稱Arithmetic and Algebraic Circuits影響因子(影響力)學(xué)科排名




書目名稱Arithmetic and Algebraic Circuits網(wǎng)絡(luò)公開度




書目名稱Arithmetic and Algebraic Circuits網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Arithmetic and Algebraic Circuits被引頻次




書目名稱Arithmetic and Algebraic Circuits被引頻次學(xué)科排名




書目名稱Arithmetic and Algebraic Circuits年度引用




書目名稱Arithmetic and Algebraic Circuits年度引用學(xué)科排名




書目名稱Arithmetic and Algebraic Circuits讀者反饋




書目名稱Arithmetic and Algebraic Circuits讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:18:39 | 只看該作者
Residue Number Systems,dvantage is the absence of carry propagation between channels in addition, subtraction and multiplication. Thus, high-performance systems may be built for applications involving only these operations using Residue Number Systems.
地板
發(fā)表于 2025-3-22 08:00:28 | 只看該作者
Floating Point,describes the basis of this number representation and?analyses the different rounding schemes. The standard IEEE 754is introduced as well as circuit designs to implement the main floating-point arithmetic operations. To close this chapter, the logarithmic system of real number representation is desc
5#
發(fā)表于 2025-3-22 09:51:04 | 只看該作者
Addition and Subtraction,dition and the circuits implementing the addition operation in their different variations. Addition is the basic arithmetic operation, so the circuits presented in this chapter are the foundation for the implementation of the remaining arithmetic operations, as it will be discussed in the following
6#
發(fā)表于 2025-3-22 16:01:24 | 只看該作者
7#
發(fā)表于 2025-3-22 17:27:17 | 只看該作者
8#
發(fā)表于 2025-3-22 22:30:18 | 只看該作者
9#
發(fā)表于 2025-3-23 04:11:03 | 只看該作者
Galois Fields GF(,),ifically to the circuits related to the finite fields GF(.) and GF(.), being . prime, following the same structure of Chap.?.. The theoretical foundations related to the Galois fields, algebra of polynomials and, particularly so now interested, related to GF(.) and to GF(.) are summarized in Appendi
10#
發(fā)表于 2025-3-23 09:01:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郎溪县| 莒南县| 阳原县| 信宜市| 贡嘎县| 辰溪县| 哈尔滨市| 安康市| 壶关县| 辉南县| 横峰县| 灵山县| 沂源县| 普兰店市| 方山县| 高邮市| 陈巴尔虎旗| 曲水县| 嫩江县| 巴楚县| 融水| 兴业县| 克东县| 白山市| 汝南县| 出国| 利津县| 志丹县| 温宿县| 通许县| 烟台市| 洱源县| 大田县| 新源县| 高淳县| 兴国县| 水富县| 巍山| 桐城市| 资阳市| 略阳县|