找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry, Number Theory, and Computation; Jennifer S. Balakrishnan,Noam Elkies,John Voight Conference proceedings 2021 The Edit

[復(fù)制鏈接]
樓主: Nutraceutical
31#
發(fā)表于 2025-3-26 22:01:35 | 只看該作者
Computing Rational Points on Rank 0 Genus 3 Hyperelliptic Curves, Chabauty–Coleman method to find the zero set of a certain system of .-adic integrals, which is known to be finite and include the set of rational points .. We implemented an algorithm in Sage to carry out the Chabauty–Coleman method on a database of 5870 curves.
32#
發(fā)表于 2025-3-27 03:12:04 | 只看該作者
Curves with Sharp Chabauty-Coleman Bound,al points if the rank condition is satisfied. We give numerous examples of genus two and rank one curves for which Coleman’s bound is sharp. Based on one of those curves, we construct an example of a curve of genus five whose rational points are determined using the descent method together with Cole
33#
發(fā)表于 2025-3-27 05:26:09 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:29 | 只看該作者
Linear Dependence Among Hecke Eigenvalues,n cuspidal eigenform. Our motivation lies in its algorithmic application. For any fixed positive integer ., the bound established here yields an algorithm that computes cuspidal Hecke eigenforms with a given weight . whose Hecke eigenvalues generate a number field of degree .. The resulting algorith
35#
發(fā)表于 2025-3-27 17:20:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:52:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:02:40 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:07 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:37 | 只看該作者
Curves with Sharp Chabauty-Coleman Bound,al points if the rank condition is satisfied. We give numerous examples of genus two and rank one curves for which Coleman’s bound is sharp. Based on one of those curves, we construct an example of a curve of genus five whose rational points are determined using the descent method together with Coleman’s theorem.
40#
發(fā)表于 2025-3-28 10:28:44 | 只看該作者
Linear Dependence Among Hecke Eigenvalues,n cuspidal eigenform. Our motivation lies in its algorithmic application. For any fixed positive integer ., the bound established here yields an algorithm that computes cuspidal Hecke eigenforms with a given weight . whose Hecke eigenvalues generate a number field of degree .. The resulting algorithm reduces to Cremona’s when .?=?1 and .?=?2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 07:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通辽市| 休宁县| 类乌齐县| 思茅市| 和平县| 卢氏县| 壤塘县| 大庆市| 温宿县| 广州市| 阿拉善右旗| 古浪县| 和顺县| 临清市| 富源县| 兰坪| 萍乡市| 昌都县| 逊克县| 九龙坡区| 如皋市| 无棣县| 隆回县| 东莞市| 临沧市| 景洪市| 施秉县| 延边| 新巴尔虎右旗| 萨迦县| 韶关市| 宿松县| 繁昌县| 海宁市| 兴化市| 梅河口市| 临沭县| 宝清县| 察哈| 彰化市| 宕昌县|