找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry, Number Theory, and Computation; Jennifer S. Balakrishnan,Noam Elkies,John Voight Conference proceedings 2021 The Edit

[復(fù)制鏈接]
樓主: Nutraceutical
31#
發(fā)表于 2025-3-26 22:01:35 | 只看該作者
Computing Rational Points on Rank 0 Genus 3 Hyperelliptic Curves, Chabauty–Coleman method to find the zero set of a certain system of .-adic integrals, which is known to be finite and include the set of rational points .. We implemented an algorithm in Sage to carry out the Chabauty–Coleman method on a database of 5870 curves.
32#
發(fā)表于 2025-3-27 03:12:04 | 只看該作者
Curves with Sharp Chabauty-Coleman Bound,al points if the rank condition is satisfied. We give numerous examples of genus two and rank one curves for which Coleman’s bound is sharp. Based on one of those curves, we construct an example of a curve of genus five whose rational points are determined using the descent method together with Cole
33#
發(fā)表于 2025-3-27 05:26:09 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:29 | 只看該作者
Linear Dependence Among Hecke Eigenvalues,n cuspidal eigenform. Our motivation lies in its algorithmic application. For any fixed positive integer ., the bound established here yields an algorithm that computes cuspidal Hecke eigenforms with a given weight . whose Hecke eigenvalues generate a number field of degree .. The resulting algorith
35#
發(fā)表于 2025-3-27 17:20:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:52:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:02:40 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:07 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:37 | 只看該作者
Curves with Sharp Chabauty-Coleman Bound,al points if the rank condition is satisfied. We give numerous examples of genus two and rank one curves for which Coleman’s bound is sharp. Based on one of those curves, we construct an example of a curve of genus five whose rational points are determined using the descent method together with Coleman’s theorem.
40#
發(fā)表于 2025-3-28 10:28:44 | 只看該作者
Linear Dependence Among Hecke Eigenvalues,n cuspidal eigenform. Our motivation lies in its algorithmic application. For any fixed positive integer ., the bound established here yields an algorithm that computes cuspidal Hecke eigenforms with a given weight . whose Hecke eigenvalues generate a number field of degree .. The resulting algorithm reduces to Cremona’s when .?=?1 and .?=?2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 07:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉尔市| 巨野县| 沙河市| 剑河县| 湘潭县| 双峰县| 海兴县| 万山特区| 长子县| 夏河县| 庐江县| 横山县| 泾源县| 静宁县| 漳州市| 开阳县| 姚安县| 韩城市| 大姚县| 抚远县| 梅河口市| 沧州市| 漳浦县| 汤原县| 秦皇岛市| 巴林右旗| 蒙城县| 华亭县| 新化县| 上虞市| 任丘市| 潍坊市| 吴桥县| 泗水县| 怀安县| 冀州市| 望城县| 景宁| 闸北区| 平果县| 交口县|