找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry, Number Theory, and Computation; Jennifer S. Balakrishnan,Noam Elkies,John Voight Conference proceedings 2021 The Edit

[復制鏈接]
樓主: Nutraceutical
11#
發(fā)表于 2025-3-23 12:02:35 | 只看該作者
12#
發(fā)表于 2025-3-23 16:57:37 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:58 | 只看該作者
Elliptic Curves with Good Reduction Outside of the First Six Primes,e computation time to conclude. We present data on the distribution of various quantities associated to curves in the set. We also discuss the connection to .-unit equations and the existence of rational elliptic curves with maximal conductor.
14#
發(fā)表于 2025-3-23 22:26:56 | 只看該作者
15#
發(fā)表于 2025-3-24 05:31:14 | 只看該作者
Restrictions on Weil Polynomials of Jacobians of Hyperelliptic Curves, particular form modulo 2. For fixed .?≥?1, the proportion of isogeny classes of .-dimensional abelian varieties defined over . which fail this condition is 1???.(2.?+?2)∕2. as .?→. ranges over odd prime powers, where .(.) denotes the number of partitions of . into odd parts.
16#
發(fā)表于 2025-3-24 07:58:48 | 只看該作者
Effective Obstruction to Lifting Tate Classes from Positive Characteristic,ur method relies only on a single prime reduction and gives the possibility of cutting down on the dimension of Tate classes by two or more. The obstruction map comes from .-adic variational Hodge conjecture and we rely on the recent advancement by Bloch–Esnault–Kerz to interpret our bounds.
17#
發(fā)表于 2025-3-24 11:20:16 | 只看該作者
Conjecture: 100% of Elliptic Surfaces Over , have Rank Zero,tify this conjecture. We then discuss how it would follow from either understanding of certain .-functions, or from understanding of the local behaviour of the surfaces. Finally, we make a conjecture about ranks of elliptic surfaces over finite fields, and highlight some experimental evidence supporting it.
18#
發(fā)表于 2025-3-24 15:49:28 | 只看該作者
A Robust Implementation for Solving the ,-Unit Equation and Several Applications,rove an asymptotic version of Fermat’s Last Theorem for totally real cubic number fields with bounded discriminant where 2 is totally ramified. In addition, we use the implementation to find all solutions to some cubic Ramanujan-Nagell equations.
19#
發(fā)表于 2025-3-24 20:46:31 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:41 | 只看該作者
Conference proceedings 2021ite fields. The articles also explore examples important for future research..Specific topics include.● algebraic varieties over finite fields.● the Chabauty-Coleman method.● modular forms.● rational points on curves of small genus.● S-unit equations and integral points..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-17 07:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
河曲县| 元朗区| 永仁县| 甘泉县| 凤城市| 北海市| 青龙| 永济市| 鹤峰县| 九龙坡区| 庆阳市| 苗栗市| 沂水县| 威海市| 乌拉特前旗| 钟山县| 三亚市| 克什克腾旗| 特克斯县| 东兰县| 拜城县| 宁化县| 类乌齐县| 望城县| 航空| 吉首市| 平凉市| 溆浦县| 绥江县| 竹北市| 静安区| 中牟县| 铜梁县| 蓬安县| 达拉特旗| 富锦市| 梨树县| 富阳市| 盘山县| 古交市| 文水县|