找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry; Gary Cornell,Joseph H. Silverman Book 1986 Springer-Verlag New York Inc. 1986 Abelian variety.Blowing up.Compactifica

[復制鏈接]
樓主: HEIR
41#
發(fā)表于 2025-3-28 18:35:36 | 只看該作者
Managed Providers of Data AccessIn this chapter we review the basic definitions of Arakelov intersection theory, and then sketch the proofs of some fundamental results of Arakelov, Faltings and Hriljac. Many interesting topics are beyond the scope of this introduction, and may be found in the references [2], [3], [8], [12], [20] and their bibliographies.
42#
發(fā)表于 2025-3-28 19:34:18 | 只看該作者
43#
發(fā)表于 2025-3-29 00:28:40 | 只看該作者
44#
發(fā)表于 2025-3-29 03:15:30 | 只看該作者
45#
發(fā)表于 2025-3-29 07:29:52 | 只看該作者
,Lipman’s Proof of Resolution of Singularities for Surfaces,This is an exposition of Lipman’s beautiful proof [9] of resolution of singularities for two-dimensional schemes. His proof is very conceptual, and therefore works for arbitrary excellent schemes, for instance arithmetic surfaces, with relatively little extra work. (See [4, Chap. IV] for the definition of excellent scheme.)
46#
發(fā)表于 2025-3-29 12:30:49 | 只看該作者
An Introduction to Arakelov Intersection Theory,In this chapter we review the basic definitions of Arakelov intersection theory, and then sketch the proofs of some fundamental results of Arakelov, Faltings and Hriljac. Many interesting topics are beyond the scope of this introduction, and may be found in the references [2], [3], [8], [12], [20] and their bibliographies.
47#
發(fā)表于 2025-3-29 17:11:23 | 只看該作者
Group Schemes, Formal Groups, and ,-Divisible Groups,gave me—with characteristic forethought—a nearly impossible task. I was to cover group schemes in general, finite group schemes in particular, sketch an acquaintance with formal groups, and study .-divisible groups—all in the compass of some six hours of lectures!
48#
發(fā)表于 2025-3-29 23:04:58 | 只看該作者
49#
發(fā)表于 2025-3-30 00:01:51 | 只看該作者
Minimal Models for Curves over Dedekind Rings,rings. We have clpsely followed Lichtenbaum [8]; some proofs have been skipped or summarized so as to go into more detail concerning other parts of the construction. Since the main arguments of [8] apply over Dedekind rings, we work always over Dedekind rings rather than discrete valuation rings.
50#
發(fā)表于 2025-3-30 08:07:12 | 只看該作者
Overview of .NET Application Architecturegave me—with characteristic forethought—a nearly impossible task. I was to cover group schemes in general, finite group schemes in particular, sketch an acquaintance with formal groups, and study .-divisible groups—all in the compass of some six hours of lectures!
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
民权县| 中牟县| 武乡县| 冷水江市| 林周县| 嘉善县| 衡南县| 靖边县| 泾源县| 拉孜县| 奉新县| 准格尔旗| 奇台县| 乐平市| 台北市| 苍溪县| 绿春县| 汪清县| 北川| 石狮市| 石家庄市| 云南省| 南皮县| 武陟县| 博客| 来安县| 麦盖提县| 尉氏县| 将乐县| 阳朔县| 临沧市| 克拉玛依市| 高平市| 墨脱县| 旬阳县| 麻阳| 额尔古纳市| 宜君县| 澄江县| 肇庆市| 兰坪|