找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry; Gary Cornell,Joseph H. Silverman Book 1986 Springer-Verlag New York Inc. 1986 Abelian variety.Blowing up.Compactifica

[復(fù)制鏈接]
樓主: HEIR
11#
發(fā)表于 2025-3-23 13:38:01 | 只看該作者
12#
發(fā)表于 2025-3-23 14:22:58 | 只看該作者
Overview of .NET Application Architectureof references at the end of this chapter). For the algebraic-geometric study of abelian varieties over arbitrary fields, the reader is referred to [M-AV] and to the articles of J. S. Milne in this volume.
13#
發(fā)表于 2025-3-23 21:23:35 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:05 | 只看該作者
Some Historical Notes,ly makes it much easier to state them than it was at the time when they were first used. Of course, this does not mean that we intend to critize those who invented them, which had to state them at a time when the technical means available were much weaker than those we have today.
15#
發(fā)表于 2025-3-24 05:15:42 | 只看該作者
,Abelian Varieties over ?,of references at the end of this chapter). For the algebraic-geometric study of abelian varieties over arbitrary fields, the reader is referred to [M-AV] and to the articles of J. S. Milne in this volume.
16#
發(fā)表于 2025-3-24 08:18:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:29:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:50:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:27:22 | 只看該作者
,Abelian Varieties over ?,ct. In the first section we prove some basic results on complex tori. The second section is devoted to a discussion of isogenics. The third section (the longest) describes the necessary and sufficient conditions that a complex torus must satisfy in order to be isomorphic to an abelian variety. In th
20#
發(fā)表于 2025-3-25 02:45:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上虞市| 桃园县| 苗栗市| 和林格尔县| 炎陵县| 南华县| 丰镇市| 修武县| 新兴县| 新干县| 鄂伦春自治旗| 庄浪县| 开远市| 乐陵市| 乌兰察布市| 南溪县| 通渭县| 望江县| 历史| 镇安县| 遵义县| 宁波市| 南溪县| 康定县| 泽普县| 望城县| 桐梓县| 类乌齐县| 南靖县| 普定县| 江川县| 清水河县| 济南市| 宣汉县| 凤庆县| 富蕴县| 鄱阳县| 榆社县| 平泉县| 石狮市| 临沭县|