找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry; Gary Cornell,Joseph H. Silverman Book 1986 Springer-Verlag New York Inc. 1986 Abelian variety.Blowing up.Compactifica

[復(fù)制鏈接]
樓主: HEIR
21#
發(fā)表于 2025-3-25 07:17:42 | 只看該作者
22#
發(fā)表于 2025-3-25 09:52:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:06:13 | 只看該作者
Minimal Models for Curves over Dedekind Rings,rings. We have clpsely followed Lichtenbaum [8]; some proofs have been skipped or summarized so as to go into more detail concerning other parts of the construction. Since the main arguments of [8] apply over Dedekind rings, we work always over Dedekind rings rather than discrete valuation rings.
24#
發(fā)表于 2025-3-25 16:14:01 | 只看該作者
25#
發(fā)表于 2025-3-25 21:28:38 | 只看該作者
A Higher Dimensional Mordell Conjecture,ral or rational points. Indeed, if a complete curve has genus g . 2, then it has finitely many rational points; any affine curve whose projective closure is a curve of genus at least two will, ., have only finitely many integral points. A curve of genus 1 is an elliptic curve; it will have infinitel
26#
發(fā)表于 2025-3-26 00:54:34 | 只看該作者
27#
發(fā)表于 2025-3-26 07:51:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:08:27 | 只看該作者
https://doi.org/10.1007/978-1-4302-0073-4ordell. They are not meant to be a complete historical treatment, and they present only the author’s very personal opinion of how things evolved, and who contributed important ideas. He therefore apologizes in advance for the inaccuracies in them, and that he has omitted many who have contributed th
29#
發(fā)表于 2025-3-26 14:15:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:38:36 | 只看該作者
Overview of .NET Application Architecturect. In the first section we prove some basic results on complex tori. The second section is devoted to a discussion of isogenics. The third section (the longest) describes the necessary and sufficient conditions that a complex torus must satisfy in order to be isomorphic to an abelian variety. In th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安吉县| 来安县| 怀安县| 双辽市| 堆龙德庆县| 台安县| 上虞市| 贺州市| 衡水市| 建湖县| 万荣县| 温州市| 陈巴尔虎旗| 民勤县| 娱乐| 佛山市| 大悟县| 厦门市| 乌拉特后旗| 西宁市| 秭归县| 阿拉善盟| 兴义市| 富阳市| 华池县| 宜昌市| 于田县| 会昌县| 保山市| 沁水县| 大悟县| 攀枝花市| 尼勒克县| 阿城市| 清远市| 桑日县| 扎兰屯市| 金川县| 屏东县| 军事| 南京市|